May  2002, 2(2): 279-294. doi: 10.3934/dcdsb.2002.2.279

Numerical approximation of a parabolic problem with a nonlinear boundary condition in several space dimensions

1. 

Department of Mathematics, FCEyN, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina, Argentina, Argentina

2. 

Departamento de Matematica, FCEyN, UBA, 1428 Buenos Aires, Argentina

Received  December 2001 Published  February 2002

In this paper we study the asymptotic behavior of a semidiscrete numerical approximation for the heat equation, $u_t = \Delta u$, in a bounded smooth domain with a nonlinear flux boundary condition, $(\partial u)/(\partial\eta)= u^p$. We focus in the behavior of blowing up solutions. We prove that every numerical solution blows up in finite time if and only if $p > 1$ and that the numerical blow-up time converges to the continuous one as the mesh parameter goes to zero. Also we show that the blow-up rate for the numerical scheme is different from the continuous one. Nevertheless we find that the blow-up set for the numerical approximations is contained in a small neighborhood of the blow-up set of the continuous problem when the mesh parameter is small enough.
Citation: G. Acosta, Julián Fernández Bonder, P. Groisman, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition in several space dimensions. Discrete & Continuous Dynamical Systems - B, 2002, 2 (2) : 279-294. doi: 10.3934/dcdsb.2002.2.279
[1]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[2]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

[3]

Yoshikazu Giga. Interior derivative blow-up for quasilinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 449-461. doi: 10.3934/dcds.1995.1.449

[4]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

[5]

Yukihiro Seki. A remark on blow-up at space infinity. Conference Publications, 2009, 2009 (Special) : 691-696. doi: 10.3934/proc.2009.2009.691

[6]

Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225

[7]

Baoquan Yuan, Xiao Li. Blow-up criteria of smooth solutions to the three-dimensional micropolar fluid equations in Besov space. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2167-2179. doi: 10.3934/dcdss.2016090

[8]

Monica Marras, Stella Vernier-Piro, Giuseppe Viglialoro. Blow-up phenomena for nonlinear pseudo-parabolic equations with gradient term. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2291-2300. doi: 10.3934/dcdsb.2017096

[9]

Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051

[10]

Qiong Chen, Chunlai Mu, Zhaoyin Xiang. Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system. Communications on Pure & Applied Analysis, 2006, 5 (3) : 435-446. doi: 10.3934/cpaa.2006.5.435

[11]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[12]

Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671

[13]

Monica Marras, Stella Vernier Piro. Bounds for blow-up time in nonlinear parabolic systems. Conference Publications, 2011, 2011 (Special) : 1025-1031. doi: 10.3934/proc.2011.2011.1025

[14]

Huiling Li, Mingxin Wang. Properties of blow-up solutions to a parabolic system with nonlinear localized terms. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 683-700. doi: 10.3934/dcds.2005.13.683

[15]

Julián López-Gómez, Pavol Quittner. Complete and energy blow-up in indefinite superlinear parabolic problems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 169-186. doi: 10.3934/dcds.2006.14.169

[16]

Alan E. Lindsay. An asymptotic study of blow up multiplicity in fourth order parabolic partial differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 189-215. doi: 10.3934/dcdsb.2014.19.189

[17]

Júlia Matos. Unfocused blow up solutions of semilinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 905-928. doi: 10.3934/dcds.1999.5.905

[18]

Pablo Álvarez-Caudevilla, V. A. Galaktionov. Blow-up scaling and global behaviour of solutions of the bi-Laplace equation via pencil operators. Communications on Pure & Applied Analysis, 2016, 15 (1) : 261-286. doi: 10.3934/cpaa.2016.15.261

[19]

María J. Cáceres, Ricarda Schneider. Blow-up, steady states and long time behaviour of excitatory-inhibitory nonlinear neuron models. Kinetic & Related Models, 2017, 10 (3) : 587-612. doi: 10.3934/krm.2017024

[20]

Mohamed-Ali Hamza, Hatem Zaag. Blow-up results for semilinear wave equations in the superconformal case. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2315-2329. doi: 10.3934/dcdsb.2013.18.2315

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (4)

[Back to Top]