August  2002, 2(3): 313-378. doi: 10.3934/dcdsb.2002.2.313

Solitary waves in nonlinear dispersive systems

1. 

Department of Mathematics, Statistics and Computer Science, The University of Illinois at Chicago , 851 S. Morgan Street MC 249, Chicago, Illinois 60607-7045, United States

2. 

The Department of Mathematical Sciences, The University of Memphis, Memphis, TN 38152, The Ph.D Program in Mathematics, The Graduate Center of the City University of New York, New York, NY 10016, United States

Received  October 2001 Revised  January 2002 Published  May 2002

Evolution equations that feature both nonlinear and dispersive effects often possess solitary-wave solutions. Exact theory for such waves has been developed and applied to single equations of Korteweg-de Vries type, Schrödinger-type and regularized long-wave-type for example. Much less common has been the analysis of solitary-wave solutions for systems of equations. The present paper is concerned with solitary travelling-wave solutions to systems of equations arising in fluid mechanics and other areas of science and engineering. The aim is to show that appropriate modification of the methods coming to the fore for single equations may be effectively applied to systems as well. This contention is demonstrated explicitly for the Gear- Grimshaw system modeling the interaction of internal waves and for the Boussinesq systems that arise in describing the two-way propagation of long-crested surface water waves.
Citation: Jerry Bona, Hongqiu Chen. Solitary waves in nonlinear dispersive systems. Discrete and Continuous Dynamical Systems - B, 2002, 2 (3) : 313-378. doi: 10.3934/dcdsb.2002.2.313
[1]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[2]

José Raúl Quintero, Juan Carlos Muñoz Grajales. Solitary waves for an internal wave model. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5721-5741. doi: 10.3934/dcds.2016051

[3]

Daniele Cassani, João Marcos do Ó, Abbas Moameni. Existence and concentration of solitary waves for a class of quasilinear Schrödinger equations. Communications on Pure and Applied Analysis, 2010, 9 (2) : 281-306. doi: 10.3934/cpaa.2010.9.281

[4]

Dmitry Treschev. Travelling waves in FPU lattices. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867

[5]

Yuanhong Wei, Yong Li, Xue Yang. On concentration of semi-classical solitary waves for a generalized Kadomtsev-Petviashvili equation. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1095-1106. doi: 10.3934/dcdss.2017059

[6]

Jerry L. Bona, Thierry Colin, Colette Guillopé. Propagation of long-crested water waves. Ⅱ. Bore propagation. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5543-5569. doi: 10.3934/dcds.2019244

[7]

J. Alberto Conejero, Marko Kostić, Pedro J. Miana, Marina Murillo-Arcila. Distributionally chaotic families of operators on Fréchet spaces. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1915-1939. doi: 10.3934/cpaa.2016022

[8]

Orlando Lopes. A linearized instability result for solitary waves. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 115-119. doi: 10.3934/dcds.2002.8.115

[9]

Matthew H. Chan, Peter S. Kim, Robert Marangell. Stability of travelling waves in a Wolbachia invasion. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 609-628. doi: 10.3934/dcdsb.2018036

[10]

Raphael Stuhlmeier. Internal Gerstner waves on a sloping bed. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3183-3192. doi: 10.3934/dcds.2014.34.3183

[11]

Jerry L. Bona, Henrik Kalisch. Models for internal waves in deep water. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 1-20. doi: 10.3934/dcds.2000.6.1

[12]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure and Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[13]

John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations and Control Theory, 2019, 8 (1) : 1-29. doi: 10.3934/eect.2019001

[14]

Emmanuel Hebey. Solitary waves in critical Abelian gauge theories. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1747-1761. doi: 10.3934/dcds.2012.32.1747

[15]

Yiren Chen, Zhengrong Liu. The bifurcations of solitary and kink waves described by the Gardner equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1629-1645. doi: 10.3934/dcdss.2016067

[16]

Ola I. H. Maehlen. Solitary waves for weakly dispersive equations with inhomogeneous nonlinearities. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4113-4130. doi: 10.3934/dcds.2020174

[17]

H. Kalisch. Stability of solitary waves for a nonlinearly dispersive equation. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 709-717. doi: 10.3934/dcds.2004.10.709

[18]

John R. King, Judith Pérez-Velázquez, H.M. Byrne. Singular travelling waves in a model for tumour encapsulation. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 195-230. doi: 10.3934/dcds.2009.25.195

[19]

Arnaud Ducrot, Michel Langlais, Pierre Magal. Multiple travelling waves for an $SI$-epidemic model. Networks and Heterogeneous Media, 2013, 8 (1) : 171-190. doi: 10.3934/nhm.2013.8.171

[20]

S. Jacquir, S. Binczak, J. P. Gauthier, J. M. Bilbault. Emergence of travelling waves in smooth nerve fibres. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 263-272. doi: 10.3934/dcdss.2008.1.263

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (103)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]