August  2002, 2(3): 389-399. doi: 10.3934/dcdsb.2002.2.389

Quasi periodic breathers in Hamiltonian lattices with symmetries

1. 

Dipartimento di Matematica “F. Enriques”, Universita di Milano, Via Saldini 50, 20133 Milano

2. 

Dipartimento di Matematica, Via Saldini 50, 20 133, Milano, Italy

Received  November 2001 Published  May 2002

We prove existence of quasiperiodic breathers in Hamiltonian lattices of weakly coupled oscillators having some integrals of motion independent of the Hamiltonian. The proof is obtained by constructing quasiperiodic breathers in the anticontinuoum limit and using a recent theorem by N.N. Nekhoroshev [8] as extended in [5] to continue them to the coupled case. Applications to several models are given.
Citation: Dario Bambusi, D. Vella. Quasi periodic breathers in Hamiltonian lattices with symmetries. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 389-399. doi: 10.3934/dcdsb.2002.2.389
[1]

S. Aubry, G. Kopidakis, V. Kadelburg. Variational proof for hard Discrete breathers in some classes of Hamiltonian dynamical systems. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 271-298. doi: 10.3934/dcdsb.2001.1.271

[2]

L. Bakker. A reducible representation of the generalized symmetry group of a quasiperiodic flow. Conference Publications, 2003, 2003 (Special) : 68-77. doi: 10.3934/proc.2003.2003.68

[3]

Michael Kastner, Jacques-Alexandre Sepulchre. Effective Hamiltonian for traveling discrete breathers in the FPU chain. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 719-734. doi: 10.3934/dcdsb.2005.5.719

[4]

Panayotis Panayotaros. Continuation and bifurcations of breathers in a finite discrete NLS equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1227-1245. doi: 10.3934/dcdss.2011.4.1227

[5]

Jesús Cuevas, Bernardo Sánchez-Rey, J. C. Eilbeck, Francis Michael Russell. Interaction of moving discrete breathers with interstitial defects. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1057-1067. doi: 10.3934/dcdss.2011.4.1057

[6]

Jean-Pierre Eckmann, C. Eugene Wayne. Breathers as metastable states for the discrete NLS equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6091-6103. doi: 10.3934/dcds.2018136

[7]

Pei Ma, Yan Li, Jihui Zhang. Symmetry and nonexistence of positive solutions for fractional systems. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1053-1070. doi: 10.3934/cpaa.2018051

[8]

Wenxiong Chen, Congming Li. Radial symmetry of solutions for some integral systems of Wolff type. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1083-1093. doi: 10.3934/dcds.2011.30.1083

[9]

Ran Zhuo, Yan Li. Nonexistence and symmetry of solutions for Schrödinger systems involving fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1595-1611. doi: 10.3934/dcds.2019071

[10]

Jordi-Lluís Figueras, Àlex Haro. A note on the fractalization of saddle invariant curves in quasiperiodic systems. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1095-1107. doi: 10.3934/dcdss.2016043

[11]

Bin Liu. Quasiperiodic solutions of semilinear Liénard equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 137-160. doi: 10.3934/dcds.2005.12.137

[12]

Zhitao Zhang, Haijun Luo. Symmetry and asymptotic behavior of ground state solutions for schrödinger systems with linear interaction. Communications on Pure & Applied Analysis, 2018, 17 (3) : 787-806. doi: 10.3934/cpaa.2018040

[13]

Jianshe Yu, Honghua Bin, Zhiming Guo. Periodic solutions for discrete convex Hamiltonian systems via Clarke duality. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 939-950. doi: 10.3934/dcds.2006.15.939

[14]

Peter Poláčik, Darío A. Valdebenito. Existence of quasiperiodic solutions of elliptic equations on the entire space with a quadratic nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-25. doi: 10.3934/dcdss.2020077

[15]

Kathrin Flasskamp, Sebastian Hage-Packhäuser, Sina Ober-Blöbaum. Symmetry exploiting control of hybrid mechanical systems. Journal of Computational Dynamics, 2015, 2 (1) : 25-50. doi: 10.3934/jcd.2015.2.25

[16]

Sebastian Hage-Packhäuser, Michael Dellnitz. Stabilization via symmetry switching in hybrid dynamical systems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 239-263. doi: 10.3934/dcdsb.2011.16.239

[17]

E. García-Toraño Andrés, Bavo Langerock, Frans Cantrijn. Aspects of reduction and transformation of Lagrangian systems with symmetry. Journal of Geometric Mechanics, 2014, 6 (1) : 1-23. doi: 10.3934/jgm.2014.6.1

[18]

Dmitry V. Zenkov. Linear conservation laws of nonholonomic systems with symmetry. Conference Publications, 2003, 2003 (Special) : 967-976. doi: 10.3934/proc.2003.2003.967

[19]

J. Földes, Peter Poláčik. On cooperative parabolic systems: Harnack inequalities and asymptotic symmetry. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 133-157. doi: 10.3934/dcds.2009.25.133

[20]

Serena Dipierro. Geometric inequalities and symmetry results for elliptic systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3473-3496. doi: 10.3934/dcds.2013.33.3473

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (17)

Other articles
by authors

[Back to Top]