
Previous Article
Renormalization for cubic frequency invariant tori in Hamiltonian systems with two degrees of freedom
 DCDSB Home
 This Issue

Next Article
Computational information for the logistic map at the chaos threshold
Singular perturbation analysis for the reduction of complex chemistry in gaseous mixtures using the entropic structure
1.  Laboratoire de Mathématiques Appliquées de Lyon, Université Claude Bernard, Lyon 1, 69622 Villeurbanne Cedex, France 
[1] 
Stéphane Chrétien, Sébastien Darses, Christophe Guyeux, Paul Clarkson. On the pinning controllability of complex networks using perturbation theory of extreme singular values. application to synchronisation in power grids. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 289299. doi: 10.3934/naco.2017019 
[2] 
Eduard MarušićPaloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure and Applied Analysis, 2021, 20 (2) : 533545. doi: 10.3934/cpaa.2020279 
[3] 
Manfred Deistler. Singular arma systems: A structure theory. Numerical Algebra, Control and Optimization, 2019, 9 (3) : 383391. doi: 10.3934/naco.2019025 
[4] 
Ilona Gucwa, Peter Szmolyan. Geometric singular perturbation analysis of an autocatalator model. Discrete and Continuous Dynamical Systems  S, 2009, 2 (4) : 783806. doi: 10.3934/dcdss.2009.2.783 
[5] 
Francis C. Motta, Patrick D. Shipman. Informing the structure of complex Hadamard matrix spaces using a flow. Discrete and Continuous Dynamical Systems  S, 2019, 12 (8) : 23492364. doi: 10.3934/dcdss.2019147 
[6] 
Fabio Camilli, Annalisa Cesaroni. A note on singular perturbation problems via AubryMather theory. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 807819. doi: 10.3934/dcds.2007.17.807 
[7] 
Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II. Networks and Heterogeneous Media, 2015, 10 (4) : 897948. doi: 10.3934/nhm.2015.10.897 
[8] 
Chris Guiver. The generalised singular perturbation approximation for bounded real and positive real control systems. Mathematical Control and Related Fields, 2019, 9 (2) : 313350. doi: 10.3934/mcrf.2019016 
[9] 
Feifei Cheng, Ji Li. Geometric singular perturbation analysis of DegasperisProcesi equation with distributed delay. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 967985. doi: 10.3934/dcds.2020305 
[10] 
Wei Wang, Yan Lv. Limit behavior of nonlinear stochastic wave equations with singular perturbation. Discrete and Continuous Dynamical Systems  B, 2010, 13 (1) : 175193. doi: 10.3934/dcdsb.2010.13.175 
[11] 
Nathan GlattHoltz, Mohammed Ziane. Singular perturbation systems with stochastic forcing and the renormalization group method. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 12411268. doi: 10.3934/dcds.2010.26.1241 
[12] 
Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks and Heterogeneous Media, 2013, 8 (4) : 10091034. doi: 10.3934/nhm.2013.8.1009 
[13] 
Yangyang Shi, Hongjun Gao. Homogenization for stochastic reactiondiffusion equations with singular perturbation term. Discrete and Continuous Dynamical Systems  B, 2022, 27 (4) : 24012426. doi: 10.3934/dcdsb.2021137 
[14] 
Jérôme Buzzi, Todd Fisher. Entropic stability beyond partial hyperbolicity. Journal of Modern Dynamics, 2013, 7 (4) : 527552. doi: 10.3934/jmd.2013.7.527 
[15] 
ZhengJian Bai, XiaoQing Jin, SeakWeng Vong. On some inverse singular value problems with Toeplitzrelated structure. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 187192. doi: 10.3934/naco.2012.2.187 
[16] 
Hiroshi Morishita, Eiji Yanagida, Shoji Yotsutani. Structure of positive radial solutions including singular solutions to Matukuma's equation. Communications on Pure and Applied Analysis, 2005, 4 (4) : 871888. doi: 10.3934/cpaa.2005.4.871 
[17] 
Sheri M. Markose. Complex type 4 structure changing dynamics of digital agents: Nash equilibria of a game with arms race in innovations. Journal of Dynamics and Games, 2017, 4 (3) : 255284. doi: 10.3934/jdg.2017015 
[18] 
Robert H. Dillon, Jingxuan Zhuo. Using the immersed boundary method to model complex fluidsstructure interaction in sperm motility. Discrete and Continuous Dynamical Systems  B, 2011, 15 (2) : 343355. doi: 10.3934/dcdsb.2011.15.343 
[19] 
Marina Ghisi, Massimo Gobbino. Hyperbolicparabolic singular perturbation for mildly degenerate Kirchhoff equations: Globalintime error estimates. Communications on Pure and Applied Analysis, 2009, 8 (4) : 13131332. doi: 10.3934/cpaa.2009.8.1313 
[20] 
Shan Jiang, Li Liang, Meiling Sun, Fang Su. Uniform highorder convergence of multiscale finite element computation on a graded recursion for singular perturbation. Electronic Research Archive, 2020, 28 (2) : 935949. doi: 10.3934/era.2020049 
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]