-
Previous Article
Linear and nonlinear stability in a diffusional ecotoxicological model with time delays
- DCDS-B Home
- This Issue
-
Next Article
Global stability for differential equations with homogeneous nonlinearity and application to population dynamics
On the stability of two nematic liquid crystal configurations
1. | Department of Mathematics, Penn State Worthington Scranton Campus, Dunmore, PA 18512, United States |
2. | Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, United States |
[1] |
Wenya Ma, Yihang Hao, Xiangao Liu. Shape optimization in compressible liquid crystals. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1623-1639. doi: 10.3934/cpaa.2015.14.1623 |
[2] |
Yuming Chu, Yihang Hao, Xiangao Liu. Global weak solutions to a general liquid crystals system. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2681-2710. doi: 10.3934/dcds.2013.33.2681 |
[3] |
Carlos J. García-Cervera, Sookyung Joo. Reorientation of smectic a liquid crystals by magnetic fields. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1983-2000. doi: 10.3934/dcdsb.2015.20.1983 |
[4] |
Jinhae Park, Feng Chen, Jie Shen. Modeling and simulation of switchings in ferroelectric liquid crystals. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1419-1440. doi: 10.3934/dcds.2010.26.1419 |
[5] |
Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Isotropic-nematic phase transitions in liquid crystals. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 565-579. doi: 10.3934/dcdss.2011.4.565 |
[6] |
Chun Liu. Dynamic theory for incompressible Smectic-A liquid crystals: Existence and regularity. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 591-608. doi: 10.3934/dcds.2000.6.591 |
[7] |
Boling Guo, Yongqian Han, Guoli Zhou. Random attractor for the 2D stochastic nematic liquid crystals flows. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2349-2376. doi: 10.3934/cpaa.2019106 |
[8] |
Xiaoli Li. Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4907-4922. doi: 10.3934/dcds.2017211 |
[9] |
Geng Chen, Ping Zhang, Yuxi Zheng. Energy conservative solutions to a nonlinear wave system of nematic liquid crystals. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1445-1468. doi: 10.3934/cpaa.2013.12.1445 |
[10] |
Xian-Gao Liu, Jie Qing. Globally weak solutions to the flow of compressible liquid crystals system. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 757-788. doi: 10.3934/dcds.2013.33.757 |
[11] |
Kyungkeun Kang, Jinhae Park. Partial regularity of minimum energy configurations in ferroelectric liquid crystals. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1499-1511. doi: 10.3934/dcds.2013.33.1499 |
[12] |
Patricia Bauman, Daniel Phillips, Jinhae Park. Existence of solutions to boundary value problems for smectic liquid crystals. Discrete and Continuous Dynamical Systems - S, 2015, 8 (2) : 243-257. doi: 10.3934/dcdss.2015.8.243 |
[13] |
Xiaoyu Zheng, Peter Palffy-Muhoray. One order parameter tensor mean field theory for biaxial liquid crystals. Discrete and Continuous Dynamical Systems - B, 2011, 15 (2) : 475-490. doi: 10.3934/dcdsb.2011.15.475 |
[14] |
Xian-Gao Liu, Jianzhong Min, Kui Wang, Xiaotao Zhang. Serrin's regularity results for the incompressible liquid crystals system. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5579-5594. doi: 10.3934/dcds.2016045 |
[15] |
Fanghua Lin, Chun Liu. Partial regularity of the dynamic system modeling the flow of liquid crystals. Discrete and Continuous Dynamical Systems, 1996, 2 (1) : 1-22. doi: 10.3934/dcds.1996.2.1 |
[16] |
Tiziana Giorgi, Feras Yousef. Analysis of a model for bent-core liquid crystals columnar phases. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2001-2026. doi: 10.3934/dcdsb.2015.20.2001 |
[17] |
Shijin Ding, Changyou Wang, Huanyao Wen. Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one. Discrete and Continuous Dynamical Systems - B, 2011, 15 (2) : 357-371. doi: 10.3934/dcdsb.2011.15.357 |
[18] |
Shijin Ding, Junyu Lin, Changyou Wang, Huanyao Wen. Compressible hydrodynamic flow of liquid crystals in 1-D. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 539-563. doi: 10.3934/dcds.2012.32.539 |
[19] |
Zdzisław Brzeźniak, Erika Hausenblas, Paul André Razafimandimby. A note on the stochastic Ericksen-Leslie equations for nematic liquid crystals. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5785-5802. doi: 10.3934/dcdsb.2019106 |
[20] |
Pierre Degond, Amic Frouvelle, Jian-Guo Liu. From kinetic to fluid models of liquid crystals by the moment method. Kinetic and Related Models, 2022, 15 (3) : 417-465. doi: 10.3934/krm.2021047 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]