• Previous Article
    Linear and nonlinear stability in a diffusional ecotoxicological model with time delays
  • DCDS-B Home
  • This Issue
  • Next Article
    Global stability for differential equations with homogeneous nonlinearity and application to population dynamics
November  2002, 2(4): 561-574. doi: 10.3934/dcdsb.2002.2.561

On the stability of two nematic liquid crystal configurations


Department of Mathematics, Penn State Worthington Scranton Campus, Dunmore, PA 18512, United States


Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, United States

Received  April 2001 Revised  April 2002 Published  August 2002

In this article we study the stability properties of two different configurations in nematic liquid crystals. One of them is the static configuration in the presence of magnetic fields. The other one is the Poiseuille flow under the model of Ericksen for liquid crystals with variable degree of orientation [E, 91]. In the first case, we show that the planar radial symmetry solution is stable with respect to the small external magnetic field. Such phenomenon illustrates the competition mechanism between the magnetic field and the strong anchoring boundary conditions. In the Poiseuille flow case, we show that the stationary configuration obtained from our previous works [C-L, 99] [C-M, 96] is stable when the velocity gradient is small.
Citation: Bagisa Mukherjee, Chun Liu. On the stability of two nematic liquid crystal configurations. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 561-574. doi: 10.3934/dcdsb.2002.2.561

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432


Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450


Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074


Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275


A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

2019 Impact Factor: 1.27


  • PDF downloads (32)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]