
Previous Article
Wellposedness of a kinetic model of dispersed twophase flow with pointparticles and stability of travelling waves
 DCDSB Home
 This Issue

Next Article
On the stability of two nematic liquid crystal configurations
Linear and nonlinear stability in a diffusional ecotoxicological model with time delays
1.  Department of Medical Physics and Bioengineering, Southampton General Hospital, Southampton S016 6YD, United Kingdom 
2.  Department of Mathematics and Statistics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom 
[1] 
Qiyu Jin, Ion Grama, Quansheng Liu. Convergence theorems for the NonLocal Means filter. Inverse Problems & Imaging, 2018, 12 (4) : 853881. doi: 10.3934/ipi.2018036 
[2] 
Hirotada Honda. Globalintime solution and stability of KuramotoSakaguchi equation under nonlocal Coupling. Networks & Heterogeneous Media, 2017, 12 (1) : 2557. doi: 10.3934/nhm.2017002 
[3] 
StigOlof Londen, Hana Petzeltová. Convergence of solutions of a nonlocal phasefield system. Discrete & Continuous Dynamical Systems  S, 2011, 4 (3) : 653670. doi: 10.3934/dcdss.2011.4.653 
[4] 
Tao Wang. Global dynamics of a nonlocal delayed differential equation in the half plane. Communications on Pure & Applied Analysis, 2014, 13 (6) : 24752492. doi: 10.3934/cpaa.2014.13.2475 
[5] 
E. Cabral Balreira, Saber Elaydi, Rafael Luís. Local stability implies global stability for the planar Ricker competition model. Discrete & Continuous Dynamical Systems  B, 2014, 19 (2) : 323351. doi: 10.3934/dcdsb.2014.19.323 
[6] 
Abraham Solar. Stability of nonmonotone and backward waves for delay nonlocal reactiondiffusion equations. Discrete & Continuous Dynamical Systems  A, 2019, 39 (10) : 57995823. doi: 10.3934/dcds.2019255 
[7] 
ShiLiang Wu, WanTong Li, SanYang Liu. Exponential stability of traveling fronts in monostable reactionadvectiondiffusion equations with nonlocal delay. Discrete & Continuous Dynamical Systems  B, 2012, 17 (1) : 347366. doi: 10.3934/dcdsb.2012.17.347 
[8] 
Keyan Wang. Global wellposedness for a transport equation with nonlocal velocity and critical diffusion. Communications on Pure & Applied Analysis, 2008, 7 (5) : 12031210. doi: 10.3934/cpaa.2008.7.1203 
[9] 
Gabriel Peyré, Sébastien Bougleux, Laurent Cohen. Nonlocal regularization of inverse problems. Inverse Problems & Imaging, 2011, 5 (2) : 511530. doi: 10.3934/ipi.2011.5.511 
[10] 
Olivier Bonnefon, Jérôme Coville, Guillaume Legendre. Concentration phenomenon in some nonlocal equation. Discrete & Continuous Dynamical Systems  B, 2017, 22 (3) : 763781. doi: 10.3934/dcdsb.2017037 
[11] 
Henri Berestycki, Nancy Rodríguez. A nonlocal bistable reactiondiffusion equation with a gap. Discrete & Continuous Dynamical Systems  A, 2017, 37 (2) : 685723. doi: 10.3934/dcds.2017029 
[12] 
ChiuYen Kao, Yuan Lou, Wenxian Shen. Random dispersal vs. nonlocal dispersal. Discrete & Continuous Dynamical Systems  A, 2010, 26 (2) : 551596. doi: 10.3934/dcds.2010.26.551 
[13] 
Hongjie Dong, Doyoon Kim. Schauder estimates for a class of nonlocal elliptic equations. Discrete & Continuous Dynamical Systems  A, 2013, 33 (6) : 23192347. doi: 10.3934/dcds.2013.33.2319 
[14] 
Matteo Focardi. Vectorvalued obstacle problems for nonlocal energies. Discrete & Continuous Dynamical Systems  B, 2012, 17 (2) : 487507. doi: 10.3934/dcdsb.2012.17.487 
[15] 
Jared C. Bronski, Razvan C. Fetecau, Thomas N. Gambill. A note on a nonlocal KuramotoSivashinsky equation. Discrete & Continuous Dynamical Systems  A, 2007, 18 (4) : 701707. doi: 10.3934/dcds.2007.18.701 
[16] 
Niels Jacob, FengYu Wang. Higher order eigenvalues for nonlocal Schrödinger operators. Communications on Pure & Applied Analysis, 2018, 17 (1) : 191208. doi: 10.3934/cpaa.2018012 
[17] 
Rafael Abreu, Cristian MoralesRodrigo, Antonio Suárez. Some eigenvalue problems with nonlocal boundary conditions and applications. Communications on Pure & Applied Analysis, 2014, 13 (6) : 24652474. doi: 10.3934/cpaa.2014.13.2465 
[18] 
Walter Allegretto, Yanping Lin, Shuqing Ma. On the box method for a nonlocal parabolic variational inequality. Discrete & Continuous Dynamical Systems  B, 2001, 1 (1) : 7188. doi: 10.3934/dcdsb.2001.1.71 
[19] 
Raffaella Servadei, Enrico Valdinoci. Variational methods for nonlocal operators of elliptic type. Discrete & Continuous Dynamical Systems  A, 2013, 33 (5) : 21052137. doi: 10.3934/dcds.2013.33.2105 
[20] 
A. V. Bobylev, Vladimir Dorodnitsyn. Symmetries of evolution equations with nonlocal operators and applications to the Boltzmann equation. Discrete & Continuous Dynamical Systems  A, 2009, 24 (1) : 3557. doi: 10.3934/dcds.2009.24.35 
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]