
Previous Article
Dissipative effects in piecewise linear dynamics
 DCDSB Home
 This Issue
 Next Article
On the differences between 2D and QG turbulence
1.  University of Washington, Department of Applied Mathematics, Box 352420, Seattle, WA 981952420, United States 
2.  Northwest Research Associates, Inc., Colorado Research Associates Div., 3380 Mitchell Lane, Boulder, Colorado 80301, United States 
[1] 
S. Danilov. Nonuniversal features of forced 2D turbulence in the energy and enstrophy ranges. Discrete & Continuous Dynamical Systems  B, 2005, 5 (1) : 6778. doi: 10.3934/dcdsb.2005.5.67 
[2] 
Eleftherios Gkioulekas, Ka Kit Tung. On the double cascades of energy and enstrophy in two dimensional turbulence. Part 2. Approach to the KLB limit and interpretation of experimental evidence. Discrete & Continuous Dynamical Systems  B, 2005, 5 (1) : 103124. doi: 10.3934/dcdsb.2005.5.103 
[3] 
Patrick Fischer, CharlesHenri Bruneau, Hamid Kellay. Multiresolution analysis for 2D turbulence. part 2: A physical interpretation. Discrete & Continuous Dynamical Systems  B, 2007, 7 (4) : 717734. doi: 10.3934/dcdsb.2007.7.717 
[4] 
Patrick Fischer. Multiresolution analysis for 2D turbulence. Part 1: Wavelets vs cosine packets, a comparative study. Discrete & Continuous Dynamical Systems  B, 2005, 5 (3) : 659686. doi: 10.3934/dcdsb.2005.5.659 
[5] 
Nusret Balci, Ciprian Foias, M. S Jolly, Ricardo Rosa. On universal relations in 2D turbulence. Discrete & Continuous Dynamical Systems  A, 2010, 27 (4) : 13271351. doi: 10.3934/dcds.2010.27.1327 
[6] 
Eleftherios Gkioulekas, Ka Kit Tung. On the double cascades of energy and enstrophy in two dimensional turbulence. Part 1. Theoretical formulation. Discrete & Continuous Dynamical Systems  B, 2005, 5 (1) : 79102. doi: 10.3934/dcdsb.2005.5.79 
[7] 
Leonardo Kosloff, Tomas Schonbek. Existence and decay of solutions of the 2D QG equation in the presence of an obstacle. Discrete & Continuous Dynamical Systems  S, 2014, 7 (5) : 10251043. doi: 10.3934/dcdss.2014.7.1025 
[8] 
Eleftherios Gkioulekas, Ka Kit Tung. Is the subdominant part of the energy spectrum due to downscale energy cascade hidden in quasigeostrophic turbulence?. Discrete & Continuous Dynamical Systems  B, 2007, 7 (2) : 293314. doi: 10.3934/dcdsb.2007.7.293 
[9] 
François Baccelli, Augustin Chaintreau, Danny De Vleeschauwer, David R. McDonald. HTTP turbulence. Networks & Heterogeneous Media, 2006, 1 (1) : 140. doi: 10.3934/nhm.2006.1.1 
[10] 
Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems  A, 2020, 40 (6) : 37373765. doi: 10.3934/dcds.2019230 
[11] 
Eric Falcon. Laboratory experiments on wave turbulence. Discrete & Continuous Dynamical Systems  B, 2010, 13 (4) : 819840. doi: 10.3934/dcdsb.2010.13.819 
[12] 
Hugo Beirão da Veiga. Turbulence models, $p$fluid flows, and $W^{2, L}$ regularity of solutions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 769783. doi: 10.3934/cpaa.2009.8.769 
[13] 
Marcel Lesieur. Twopoint closure based largeeddy simulations in turbulence. Part 2: Inhomogeneous cases. Discrete & Continuous Dynamical Systems  A, 2010, 28 (1) : 227241. doi: 10.3934/dcds.2010.28.227 
[14] 
Aseel Farhat, M. S Jolly, Evelyn Lunasin. Bounds on energy and enstrophy for the 3D NavierStokes$\alpha$ and Leray$\alpha$ models. Communications on Pure & Applied Analysis, 2014, 13 (5) : 21272140. doi: 10.3934/cpaa.2014.13.2127 
[15] 
W. Layton, R. Lewandowski. On a wellposed turbulence model. Discrete & Continuous Dynamical Systems  B, 2006, 6 (1) : 111128. doi: 10.3934/dcdsb.2006.6.111 
[16] 
Yifei Lou, Sung Ha Kang, Stefano Soatto, Andrea L. Bertozzi. Video stabilization of atmospheric turbulence distortion. Inverse Problems & Imaging, 2013, 7 (3) : 839861. doi: 10.3934/ipi.2013.7.839 
[17] 
Gianluca Crippa, Elizaveta Semenova, Stefano Spirito. Strong continuity for the 2D Euler equations. Kinetic & Related Models, 2015, 8 (4) : 685689. doi: 10.3934/krm.2015.8.685 
[18] 
Bernd Kawohl, Guido Sweers. On a formula for sets of constant width in 2d. Communications on Pure & Applied Analysis, 2019, 18 (4) : 21172131. doi: 10.3934/cpaa.2019095 
[19] 
Julien Cividini. Pattern formation in 2D traffic flows. Discrete & Continuous Dynamical Systems  S, 2014, 7 (3) : 395409. doi: 10.3934/dcdss.2014.7.395 
[20] 
Géry de Saxcé, Claude Vallée. Structure of the space of 2D elasticity tensors. Discrete & Continuous Dynamical Systems  S, 2013, 6 (6) : 15251537. doi: 10.3934/dcdss.2013.6.1525 
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]