May  2003, 3(2): 201-228. doi: 10.3934/dcdsb.2003.3.201

Positivity property of second-order flux-splitting schemes for the compressible Euler equations

1. 

Department of Mathematics, Indiana University, Bloomington, IN 47405-5701, United States

2. 

IPST and Department of Mathematics, University of Maryland, College Park, MD 20742, United States

Received  April 2002 Revised  January 2003 Published  February 2003

A class of upwind flux splitting methods in the Euler equations of compressible flow is considered in this paper. Using the property that Euler flux $F(U)$ is a homogeneous function of degree one in $U$, we reformulate the splitting fluxes with $F^{+}=A^{+} U$, $F^{-}=A^{-} U$, and the corresponding matrices are either symmetric or symmetrizable and keep only non-negative and non-positive eigenvalues. That leads to the conclusion that the first order schemes are positive in the sense of Lax-Liu [18], which implies that it is $L^2$-stable in some suitable sense. Moreover, the second order scheme is a stable perturbation of the first order scheme, so that the positivity of the second order schemes is also established, under a CFL-like condition. In addition, these splitting methods preserve the positivity of density and energy.
Citation: Cheng Wang, Jian-Guo Liu. Positivity property of second-order flux-splitting schemes for the compressible Euler equations. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 201-228. doi: 10.3934/dcdsb.2003.3.201
[1]

Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159

[2]

Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro. On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2010, 5 (3) : 617-633. doi: 10.3934/nhm.2010.5.617

[3]

Adimurthi , Shyam Sundar Ghoshal, G. D. Veerappa Gowda. Exact controllability of scalar conservation laws with strict convex flux. Mathematical Control & Related Fields, 2014, 4 (4) : 401-449. doi: 10.3934/mcrf.2014.4.401

[4]

Maria Laura Delle Monache, Paola Goatin. Stability estimates for scalar conservation laws with moving flux constraints. Networks & Heterogeneous Media, 2017, 12 (2) : 245-258. doi: 10.3934/nhm.2017010

[5]

Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191

[6]

Wen Shen. Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks & Heterogeneous Media, 2019, 14 (4) : 709-732. doi: 10.3934/nhm.2019028

[7]

Anupam Sen, T. Raja Sekhar. Structural stability of the Riemann solution for a strictly hyperbolic system of conservation laws with flux approximation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 931-942. doi: 10.3934/cpaa.2019045

[8]

Marco Di Francesco, Graziano Stivaletta. Convergence of the follow-the-leader scheme for scalar conservation laws with space dependent flux. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 233-266. doi: 10.3934/dcds.2020010

[9]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020041

[10]

Avner Friedman. Conservation laws in mathematical biology. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081

[11]

Mauro Garavello. A review of conservation laws on networks. Networks & Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565

[12]

Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010

[13]

Wen-Xiu Ma. Conservation laws by symmetries and adjoint symmetries. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 707-721. doi: 10.3934/dcdss.2018044

[14]

Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143

[15]

Yanbo Hu, Wancheng Sheng. The Riemann problem of conservation laws in magnetogasdynamics. Communications on Pure & Applied Analysis, 2013, 12 (2) : 755-769. doi: 10.3934/cpaa.2013.12.755

[16]

Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73

[17]

Julien Jimenez. Scalar conservation law with discontinuous flux in a bounded domain. Conference Publications, 2007, 2007 (Special) : 520-530. doi: 10.3934/proc.2007.2007.520

[18]

Jingwei Hu, Shi Jin. On kinetic flux vector splitting schemes for quantum Euler equations. Kinetic & Related Models, 2011, 4 (2) : 517-530. doi: 10.3934/krm.2011.4.517

[19]

Christophe Prieur. Control of systems of conservation laws with boundary errors. Networks & Heterogeneous Media, 2009, 4 (2) : 393-407. doi: 10.3934/nhm.2009.4.393

[20]

Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 673-682. doi: 10.3934/dcds.2000.6.673

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]