-
Previous Article
Degenerate resonances in forced oscillators
- DCDS-B Home
- This Issue
-
Next Article
The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation
Dynamics of vertical delay endomorphisms
1. | Universidad Centro Occidental Lisandro Alvarado, Decanato de Ciencias y Tecnología, Departamento de Matemática, Apartado Postal 400, Barquisimeto, Venezuela |
2. | Universidad de la República, Facultad de Ciencias, Centro de Matemática, Igua 425 C.P. 11400 Montevideo, Uruguay |
3. | Universidad Politècnica de Catalunya, Departament de Matemàtica Aplicada 2, Escola Tècnica Superior D'Enginyeria Industrial, Colom 11, 08222 Terrassa, Barcelona, Spain |
[1] |
Mehdi Pourbarat. On the arithmetic difference of middle Cantor sets. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4259-4278. doi: 10.3934/dcds.2018186 |
[2] |
S. Astels. Thickness measures for Cantor sets. Electronic Research Announcements, 1999, 5: 108-111. |
[3] |
Rovella Alvaro, Vilamajó Francesc, Romero Neptalí. Invariant manifolds for delay endomorphisms. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 35-50. doi: 10.3934/dcds.2001.7.35 |
[4] |
Nguyen Dinh Cong, Thai Son Doan, Stefan Siegmund. On Lyapunov exponents of difference equations with random delay. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 861-874. doi: 10.3934/dcdsb.2015.20.861 |
[5] |
Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577 |
[6] |
Weiyuan Qiu, Fei Yang, Yongcheng Yin. Quasisymmetric geometry of the Cantor circles as the Julia sets of rational maps. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3375-3416. doi: 10.3934/dcds.2016.36.3375 |
[7] |
Doug Hensley. Continued fractions, Cantor sets, Hausdorff dimension, and transfer operators and their analytic extension. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2417-2436. doi: 10.3934/dcds.2012.32.2417 |
[8] |
Silvére Gangloff, Alonso Herrera, Cristobal Rojas, Mathieu Sablik. Computability of topological entropy: From general systems to transformations on Cantor sets and the interval. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4259-4286. doi: 10.3934/dcds.2020180 |
[9] |
Sebastián Buedo-Fernández. Global attraction in a system of delay differential equations via compact and convex sets. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3171-3181. doi: 10.3934/dcdsb.2020056 |
[10] |
Qi Wang, Yue Zhou. Sets of zero-difference balanced functions and their applications. Advances in Mathematics of Communications, 2014, 8 (1) : 83-101. doi: 10.3934/amc.2014.8.83 |
[11] |
Joško Mandić, Tanja Vučičić. On the existence of Hadamard difference sets in groups of order 400. Advances in Mathematics of Communications, 2016, 10 (3) : 547-554. doi: 10.3934/amc.2016025 |
[12] |
Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1413-1429. doi: 10.3934/cpaa.2021026 |
[13] |
Wan-Tong Li, Bin-Guo Wang. Attractor minimal sets for nonautonomous type-K competitive and semi-convex delay differential equations with applications. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 589-611. doi: 10.3934/dcds.2009.24.589 |
[14] |
John A. D. Appleby, Xuerong Mao, Alexandra Rodkina. On stochastic stabilization of difference equations. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 843-857. doi: 10.3934/dcds.2006.15.843 |
[15] |
Ayça Çeşmelioğlu, Wilfried Meidl. Bent and vectorial bent functions, partial difference sets, and strongly regular graphs. Advances in Mathematics of Communications, 2018, 12 (4) : 691-705. doi: 10.3934/amc.2018041 |
[16] |
Zhengchun Zhou, Xiaohu Tang. New nearly optimal codebooks from relative difference sets. Advances in Mathematics of Communications, 2011, 5 (3) : 521-527. doi: 10.3934/amc.2011.5.521 |
[17] |
Büşra Özden, Oǧuz Yayla. Partial direct product difference sets and almost quaternary sequences. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021010 |
[18] |
Anna Cima, Armengol Gasull, Francesc Mañosas. Global linearization of periodic difference equations. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1575-1595. doi: 10.3934/dcds.2012.32.1575 |
[19] |
Elena Braverman, Alexandra Rodkina. Stochastic difference equations with the Allee effect. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 5929-5949. doi: 10.3934/dcds.2016060 |
[20] |
Eugenia N. Petropoulou. On some difference equations with exponential nonlinearity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2587-2594. doi: 10.3934/dcdsb.2017098 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]