November  2003, 3(4): 505-518. doi: 10.3934/dcdsb.2003.3.505

Cylindrical shell buckling: a characterization of localization and periodicity

1. 

Centre for Nonlinear Mechanics, University of Bath, Bath BA2 7AY, United Kingdom

2. 

Department of Mathematics, Heriot-Watt University, United Kingdom

3. 

Centrum voor Wiskunde en Informatica, P.O. Box 94079, 1090 GB Amsterdam, Netherlands

Received  January 2003 Revised  May 2003 Published  August 2003

A hypothesis for the prediction of the circumferential wavenumber of buckling of the thin axially-compressed cylindrical shell is presented, based on the addition of a length effect to the classical (Koiter circle) critical load result. Checks against physical and numerical experiments, both by direct comparison of wavenumbers and via a scaling law, provide strong evidence that the hypothesis is correct.
Citation: G.W. Hunt, Gabriel J. Lord, Mark A. Peletier. Cylindrical shell buckling: a characterization of localization and periodicity. Discrete and Continuous Dynamical Systems - B, 2003, 3 (4) : 505-518. doi: 10.3934/dcdsb.2003.3.505
[1]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[2]

Marta Lewicka, Hui Li. Convergence of equilibria for incompressible elastic plates in the von Kármán regime. Communications on Pure and Applied Analysis, 2015, 14 (1) : 143-166. doi: 10.3934/cpaa.2015.14.143

[3]

Julian Braun, Bernd Schmidt. An atomistic derivation of von-Kármán plate theory. Networks and Heterogeneous Media, 2022  doi: 10.3934/nhm.2022019

[4]

Ammar Khemmoudj, Yacine Mokhtari. General decay of the solution to a nonlinear viscoelastic modified von-Kármán system with delay. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3839-3866. doi: 10.3934/dcds.2019155

[5]

Catherine Lebiedzik. Uniform stability in a vectorial full Von Kármán thermoelastic system with solenoidal dissipation and free boundary conditions. Evolution Equations and Control Theory, 2021, 10 (4) : 767-796. doi: 10.3934/eect.2020092

[6]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[7]

Peng-Fei Yao. On shallow shell equations. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 697-722. doi: 10.3934/dcdss.2009.2.697

[8]

Pascal Cherrier, Albert Milani. Hyperbolic equations of Von Karman type. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 125-137. doi: 10.3934/dcdss.2016.9.125

[9]

Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks and Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007

[10]

Masoud Yari. Attractor bifurcation and final patterns of the n-dimensional and generalized Swift-Hohenberg equations. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 441-456. doi: 10.3934/dcdsb.2007.7.441

[11]

Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, 2021, 29 (5) : 2987-3015. doi: 10.3934/era.2021023

[12]

Peter Benner, Tobias Breiten, Carsten Hartmann, Burkhard Schmidt. Model reduction of controlled Fokker–Planck and Liouville–von Neumann equations. Journal of Computational Dynamics, 2020, 7 (1) : 1-33. doi: 10.3934/jcd.2020001

[13]

Yinnian He, R. M.M. Mattheij. Reformed post-processing Galerkin method for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 369-387. doi: 10.3934/dcdsb.2007.8.369

[14]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems and Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

[15]

Jean Ginibre, Giorgio Velo. Modified wave operators without loss of regularity for some long range Hartree equations. II. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1357-1376. doi: 10.3934/cpaa.2015.14.1357

[16]

Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933

[17]

Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001

[18]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5135-5148. doi: 10.3934/dcdsb.2020336

[19]

Soohyun Bae. On the elliptic equation Δu+K up = 0 in $\mathbb{R}$n. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 555-577. doi: 10.3934/dcds.2013.33.555

[20]

Jennifer D. Key, Washiela Fish, Eric Mwambene. Codes from the incidence matrices and line graphs of Hamming graphs $H^k(n,2)$ for $k \geq 2$. Advances in Mathematics of Communications, 2011, 5 (2) : 373-394. doi: 10.3934/amc.2011.5.373

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (345)
  • HTML views (0)
  • Cited by (52)

Other articles
by authors

[Back to Top]