
Previous Article
Decay of solutions to nonlinear parabolic equations: renormalization and rigorous results
 DCDSB Home
 This Issue

Next Article
Regular and random patterns in complex bifurcation diagrams
Lack of hyperbolicity in the twofluid model for twophase incompressible flow
1.  Department of Mathematics, University of Houston, Houston, Texas 772043008, United States, United States 
2.  Department of Mathematics, The Hebrew University, Jerusalem, Israel 
Much attention has centered on reformulating details of the model to avoid this awkwardness. This paper takes a different approach: a study of the nonhyperbolic operator itself. The objective is to understand the nature of illposedness in nonlinear, as distinct from linearized, models.
We present our initial study of the nonlinear operator that occurs in the twofluid equations for incompressible twophase flow. Our research indicates that one can solve Riemann problems for these nonlinear, nonhyperbolic equations. The solutions involve singular shocks, very low regularity solutions of conservation laws (solutions with singular shocks, however, are not restricted to nonhyperbolic equations). We present evidence, based on asymptotic treatment and numerical solution of regularized equations, that these singular solutions occur in the twofluid model for incompressible twophase flow. The Riemann solutions found using singular shocks have a reasonable physical interpretation.
[1] 
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local wellposedness and illposedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems  A, 2020 doi: 10.3934/dcds.2020382 
[2] 
Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems  A, 2021, 41 (1) : 455469. doi: 10.3934/dcds.2020380 
[3] 
Hua Qiu, ZhengAn Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 13751393. doi: 10.3934/era.2020073 
[4] 
Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems  A, 2021, 41 (1) : 2960. doi: 10.3934/dcds.2020297 
[5] 
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : . doi: 10.3934/cpaa.2020272 
[6] 
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020450 
[7] 
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible NavierStokes equations in two dimensions. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020348 
[8] 
Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020456 
[9] 
Pengyu Chen. Nonautonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems  A, 2020 doi: 10.3934/dcds.2020383 
[10] 
Antoine Benoit. Weak wellposedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 54755486. doi: 10.3934/cpaa.2020248 
[11] 
Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : . doi: 10.3934/krm.2020049 
[12] 
HuuQuang Nguyen, YaChi Chu, RueyLin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020169 
[13] 
Cheng He, Changzheng Qu. Global weak solutions for the twocomponent Novikov equation. Electronic Research Archive, 2020, 28 (4) : 15451562. doi: 10.3934/era.2020081 
[14] 
Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020045 
[15] 
João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems  A, 2021, 41 (1) : 277296. doi: 10.3934/dcds.2020138 
[16] 
Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in CattaneoChristov heat flux model. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020344 
[17] 
Helmut Abels, Andreas Marquardt. On a linearized MullinsSekerka/Stokes system for twophase flows. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020467 
[18] 
Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 15731624. doi: 10.3934/era.2020115 
[19] 
Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reactiondiffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020321 
[20] 
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 15031528. doi: 10.3934/era.2020079 
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]