November  2003, 3(4): 589-599. doi: 10.3934/dcdsb.2003.3.589

A model of granular flows over an erodible surface

1. 

University at Buffalo, Buffalo, NY 14260, United States, United States, United States

2. 

Department of Mathematics, University at Buffalo, Buffalo, NY 14260, United States

3. 

University at Buffalo, Department of Geology, Buffalo, NY 14260, United States

4. 

University of Buffalo, Buffalo, NY 14260, United States

Received  March 2003 Revised  July 2003 Published  August 2003

We present a framework for modeling a dry geophysical mass of granular material -- a debris or volcanic avalanche or landslide -- flowing over an erodible surface. We also describe a computing environment that incorporates topographical data into a parallel, adaptive mesh computational algorithm that solves the model equations.
Citation: E.B. Pitman, C.C. Nichita, A.K. Patra, A.C. Bauer, M. Bursik, A. Webb. A model of granular flows over an erodible surface. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 589-599. doi: 10.3934/dcdsb.2003.3.589
[1]

Jitraj Saha, Nilima Das, Jitendra Kumar, Andreas Bück. Numerical solutions for multidimensional fragmentation problems using finite volume methods. Kinetic & Related Models, 2019, 12 (1) : 79-103. doi: 10.3934/krm.2019004

[2]

Martin Hanke, William Rundell. On rational approximation methods for inverse source problems. Inverse Problems & Imaging, 2011, 5 (1) : 185-202. doi: 10.3934/ipi.2011.5.185

[3]

Caojin Zhang, George Yin, Qing Zhang, Le Yi Wang. Pollution control for switching diffusion models: Approximation methods and numerical results. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3667-3687. doi: 10.3934/dcdsb.2018310

[4]

Peter Giesl, Sigurdur Hafstein. Computational methods for Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : i-ii. doi: 10.3934/dcdsb.2015.20.8i

[5]

Ian H. Dinwoodie. Computational methods for asynchronous basins. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3391-3405. doi: 10.3934/dcdsb.2016103

[6]

Peter Giesl, Sigurdur Hafstein. Review on computational methods for Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2291-2331. doi: 10.3934/dcdsb.2015.20.2291

[7]

Yusuke Murase, Atsushi Kadoya, Nobuyuki Kenmochi. Optimal control problems for quasi-variational inequalities and its numerical approximation. Conference Publications, 2011, 2011 (Special) : 1101-1110. doi: 10.3934/proc.2011.2011.1101

[8]

Z. Foroozandeh, Maria do rosário de Pinho, M. Shamsi. On numerical methods for singular optimal control problems: An application to an AUV problem. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2219-2235. doi: 10.3934/dcdsb.2019092

[9]

Stefan Klus, Christof Schütte. Towards tensor-based methods for the numerical approximation of the Perron--Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (2) : 139-161. doi: 10.3934/jcd.2016007

[10]

G. Machado, L. Trabucho. Analytical and numerical solutions for a class of optimization problems in elasticity. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1013-1032. doi: 10.3934/dcdsb.2004.4.1013

[11]

Mei Ju Luo, Yi Zeng Chen. Smoothing and sample average approximation methods for solving stochastic generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 1-15. doi: 10.3934/jimo.2016.12.1

[12]

Abdon Atangana, Zakia Hammouch, Kolade M. Owolabi, Gisele Mephou. Preface: New trends on numerical analysis and analytical methods with their applications to real world problems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : ⅰ-ⅰ. doi: 10.3934/dcdss.201903i

[13]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[14]

A. Lehikoinen, S. Finsterle, A Voutilainen, L. M. Heikkinen, M. Vauhkonen, J. P. Kaipio. Approximation errors and truncation of computational domains with application to geophysical tomography. Inverse Problems & Imaging, 2007, 1 (2) : 371-389. doi: 10.3934/ipi.2007.1.371

[15]

Yang Yu. Introduction: Special issue on computational intelligence methods for big data and information analytics. Big Data & Information Analytics, 2017, 2 (1) : i-ii. doi: 10.3934/bdia.201701i

[16]

John T. Betts, Stephen L. Campbell, Claire Digirolamo. Initial guess sensitivity in Computational optimal control problems. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019031

[17]

Emmanuel Frénod. Homogenization-based numerical methods. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : i-ix. doi: 10.3934/dcdss.201605i

[18]

Michael Herty, Giuseppe Visconti. Kinetic methods for inverse problems. Kinetic & Related Models, 2019, 12 (5) : 1109-1130. doi: 10.3934/krm.2019042

[19]

R.G. Duran, J.I. Etcheverry, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 497-506. doi: 10.3934/dcds.1998.4.497

[20]

Henk Broer, Aaron Hagen, Gert Vegter. Numerical approximation of normally hyperbolic invariant manifolds. Conference Publications, 2003, 2003 (Special) : 133-140. doi: 10.3934/proc.2003.2003.133

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (20)

[Back to Top]