\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global periodicity in a class of reaction-diffusion systems with time delays

Abstract Related Papers Cited by
  • In this paper we study a class of reaction-diffusion systems modelling the dynamics of "food-limited" populations with periodic environmental data and time delays. The existence of a global attracting positive periodic solution is first established in the model without time delay. It is further shown that as long as the magnitude of the instantaneous self-limitation effects is larger than that of the time-delay effects, the positive periodic solution is also the global attractor in the time-delay system. Numerical simulations for both cases (with or without time delays) demonstrate the same asymptotic behavior (extinction or converging to the positive $T$-periodic solution, depending on the growth rate of the species).
    Mathematics Subject Classification: Primary: 34A34, 34D23, 92D25; Secondary: 65L07.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(74) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return