 Previous Article
 DCDSB Home
 This Issue

Next Article
Growth kinetics of cancer cells prior to detection and treatment: An alternative view
Inside mathematical modeling: building models in the context of wound healing in bone
1.  Department of Mathematics & Statistics, Old Dominion University, Norfolk, VA 23529, United States 
[1] 
Avner Friedman, Bei Hu, Chuan Xue. A three dimensional model of wound healing: Analysis and computation. Discrete & Continuous Dynamical Systems  B, 2012, 17 (8) : 26912712. doi: 10.3934/dcdsb.2012.17.2691 
[2] 
Haiyan Wang, Shiliang Wu. Spatial dynamics for a model of epidermal wound healing. Mathematical Biosciences & Engineering, 2014, 11 (5) : 12151227. doi: 10.3934/mbe.2014.11.1215 
[3] 
Sophia A. Maggelakis. Modeling the role of angiogenesis in epidermal wound healing. Discrete & Continuous Dynamical Systems  B, 2004, 4 (1) : 267273. doi: 10.3934/dcdsb.2004.4.267 
[4] 
Keng Deng. On a nonlocal reactiondiffusion population model. Discrete & Continuous Dynamical Systems  B, 2008, 9 (1) : 6573. doi: 10.3934/dcdsb.2008.9.65 
[5] 
Zhiting Xu, Yingying Zhao. A reactiondiffusion model of dengue transmission. Discrete & Continuous Dynamical Systems  B, 2014, 19 (9) : 29933018. doi: 10.3934/dcdsb.2014.19.2993 
[6] 
FengBin Wang. A periodic reactiondiffusion model with a quiescent stage. Discrete & Continuous Dynamical Systems  B, 2012, 17 (1) : 283295. doi: 10.3934/dcdsb.2012.17.283 
[7] 
Linda J. S. Allen, B. M. Bolker, Yuan Lou, A. L. Nevai. Asymptotic profiles of the steady states for an SIS epidemic reactiondiffusion model. Discrete & Continuous Dynamical Systems  A, 2008, 21 (1) : 120. doi: 10.3934/dcds.2008.21.1 
[8] 
Keng Deng, Yixiang Wu. Asymptotic behavior for a reactiondiffusion population model with delay. Discrete & Continuous Dynamical Systems  B, 2015, 20 (2) : 385395. doi: 10.3934/dcdsb.2015.20.385 
[9] 
Manjun Ma, XiaoQiang Zhao. Monostable waves and spreading speed for a reactiondiffusion model with seasonal succession. Discrete & Continuous Dynamical Systems  B, 2016, 21 (2) : 591606. doi: 10.3934/dcdsb.2016.21.591 
[10] 
Xin Li, Xingfu Zou. On a reactiondiffusion model for sterile insect release method with release on the boundary. Discrete & Continuous Dynamical Systems  B, 2012, 17 (7) : 25092522. doi: 10.3934/dcdsb.2012.17.2509 
[11] 
Haomin Huang, Mingxin Wang. The reactiondiffusion system for an SIR epidemic model with a free boundary. Discrete & Continuous Dynamical Systems  B, 2015, 20 (7) : 20392050. doi: 10.3934/dcdsb.2015.20.2039 
[12] 
Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reactiondiffusion predatorprey model. Discrete & Continuous Dynamical Systems  S, 2017, 10 (5) : 10631078. doi: 10.3934/dcdss.2017057 
[13] 
BangSheng Han, ZhiCheng Wang. Traveling wave solutions in a nonlocal reactiondiffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 10571076. doi: 10.3934/cpaa.2016.15.1057 
[14] 
Wenzhang Huang, Maoan Han, Kaiyu Liu. Dynamics of an SIS reactiondiffusion epidemic model for disease transmission. Mathematical Biosciences & Engineering, 2010, 7 (1) : 5166. doi: 10.3934/mbe.2010.7.51 
[15] 
Liang Zhang, ZhiCheng Wang. Threshold dynamics of a reactiondiffusion epidemic model with stage structure. Discrete & Continuous Dynamical Systems  B, 2017, 22 (10) : 37973820. doi: 10.3934/dcdsb.2017191 
[16] 
Hongyan Zhang, Siyu Liu, Yue Zhang. Dynamics and spatiotemporal pattern formations of a homogeneous reactiondiffusion Thomas model. Discrete & Continuous Dynamical Systems  S, 2017, 10 (5) : 11491164. doi: 10.3934/dcdss.2017062 
[17] 
Xiaoyan Zhang, Yuxiang Zhang. Spatial dynamics of a reactiondiffusion cholera model with spatial heterogeneity. Discrete & Continuous Dynamical Systems  B, 2018, 23 (6) : 26252640. doi: 10.3934/dcdsb.2018124 
[18] 
JiaFeng Cao, WanTong Li, Meng Zhao. On a free boundary problem for a nonlocal reactiondiffusion model. Discrete & Continuous Dynamical Systems  B, 2018, 23 (10) : 41174139. doi: 10.3934/dcdsb.2018128 
[19] 
Yizhuo Wang, Shangjiang Guo. A SIS reactiondiffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems  B, 2019, 24 (4) : 16271652. doi: 10.3934/dcdsb.2018223 
[20] 
Keng Deng. Asymptotic behavior of an SIR reactiondiffusion model with a linear source. Discrete & Continuous Dynamical Systems  B, 2017, 22 (11) : 113. doi: 10.3934/dcdsb.2019114 
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]