November  2004, 4(4): 1143-1172. doi: 10.3934/dcdsb.2004.4.1143

Convergence analysis of the numerical method for the primitive equations formulated in mean vorticity on a Cartesian grid

1. 

Department of Mathematics, University of Tennessee, Knoxville, TN 37996, United States

Received  September 2002 Revised  February 2004 Published  August 2004

A second order numerical method for the primitive equations (PEs) of large-scale oceanic flow formulated in mean vorticity is proposed and analyzed, and the full convergence in $L^2$ is established. In the reformulation of the PEs, the prognostic equation for the horizontal velocity is replaced by evolutionary equations for the mean vorticity field and the vertical derivative of the horizontal velocity. The total velocity field (both horizontal and vertical) is statically determined by differential equations at each fixed horizontal point. The standard centered difference approximation is applied to the prognostic equations and the determination of numerical values for the total velocity field is implemented by FFT-based solvers. Stability of such solvers are established and the convergence analysis for the whole scheme is provided in detail.
Citation: Cheng Wang. Convergence analysis of the numerical method for the primitive equations formulated in mean vorticity on a Cartesian grid. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1143-1172. doi: 10.3934/dcdsb.2004.4.1143
[1]

Cheng Wang. The primitive equations formulated in mean vorticity. Conference Publications, 2003, 2003 (Special) : 880-887. doi: 10.3934/proc.2003.2003.880

[2]

Juan Li, Wenqiang Li. Controlled reflected mean-field backward stochastic differential equations coupled with value function and related PDEs. Mathematical Control & Related Fields, 2015, 5 (3) : 501-516. doi: 10.3934/mcrf.2015.5.501

[3]

Josu Doncel, Nicolas Gast, Bruno Gaujal. Discrete mean field games: Existence of equilibria and convergence. Journal of Dynamics & Games, 2019, 6 (3) : 221-239. doi: 10.3934/jdg.2019016

[4]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[5]

Chuchu Chen, Jialin Hong. Mean-square convergence of numerical approximations for a class of backward stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2051-2067. doi: 10.3934/dcdsb.2013.18.2051

[6]

Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521

[7]

Silvia Sastre-Gomez. Equivalent formulations for steady periodic water waves of fixed mean-depth with discontinuous vorticity. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2669-2680. doi: 10.3934/dcds.2017114

[8]

Chang-Shou Lin. An expository survey on the recent development of mean field equations. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 387-410. doi: 10.3934/dcds.2007.19.387

[9]

Pierre-Emmanuel Jabin. A review of the mean field limits for Vlasov equations. Kinetic & Related Models, 2014, 7 (4) : 661-711. doi: 10.3934/krm.2014.7.661

[10]

Michael Herty, Lorenzo Pareschi, Sonja Steffensen. Mean--field control and Riccati equations. Networks & Heterogeneous Media, 2015, 10 (3) : 699-715. doi: 10.3934/nhm.2015.10.699

[11]

Makram Hamouda, Chang-Yeol Jung, Roger Temam. Asymptotic analysis for the 3D primitive equations in a channel. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 401-422. doi: 10.3934/dcdss.2013.6.401

[12]

Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the Kuramoto model on graphs Ⅰ. The mean field equation and transition point formulas. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 131-155. doi: 10.3934/dcds.2019006

[13]

Ruchika Sehgal, Aparna Mehra. Worst-case analysis of Gini mean difference safety measure. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020037

[14]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2019  doi: 10.3934/jimo.2019111

[15]

Y. Goto, K. Ishii, T. Ogawa. Method of the distance function to the Bence-Merriman-Osher algorithm for motion by mean curvature. Communications on Pure & Applied Analysis, 2005, 4 (2) : 311-339. doi: 10.3934/cpaa.2005.4.311

[16]

Oleksandr Misiats, Nung Kwan Yip. Convergence of space-time discrete threshold dynamics to anisotropic motion by mean curvature. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6379-6411. doi: 10.3934/dcds.2016076

[17]

Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Mean-field backward stochastic Volterra integral equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1929-1967. doi: 10.3934/dcdsb.2013.18.1929

[18]

Wei Wang, Kai Liu, Xiulian Wang. Sensitivity to small delays of mean square stability for stochastic neutral evolution equations. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2403-2418. doi: 10.3934/cpaa.2020105

[19]

Franco Flandoli, Marta Leocata, Cristiano Ricci. The Vlasov-Navier-Stokes equations as a mean field limit. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3741-3753. doi: 10.3934/dcdsb.2018313

[20]

Zhen Li, Jicheng Liu. Synchronization for stochastic differential equations with nonlinear multiplicative noise in the mean square sense. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5709-5736. doi: 10.3934/dcdsb.2019103

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]