• Previous Article
    Size-structured population dynamics models and their numerical solutions
  • DCDS-B Home
  • This Issue
  • Next Article
    Convergence analysis of the numerical method for the primitive equations formulated in mean vorticity on a Cartesian grid
November  2004, 4(4): 1173-1202. doi: 10.3934/dcdsb.2004.4.1173

Modelling the dynamics of endemic malaria in growing populations


The Abdus Salam International Centre for Theoretical Physics, Trieste 34100, Italy

Received  January 2003 Revised  March 2004 Published  August 2004

A mathematical model for endemic malaria involving variable human and mosquito populations is analysed. A threshold parameter $R_0$ exists and the disease can persist if and only if $R_0$ exceeds $1$. $R_0$ is seen to be a generalisation of the basic reproduction ratio associated with the Ross-Macdonald model for malaria transmission. The disease free equilibrium always exist and is globally stable when $R_0$ is below $1$. A perturbation analysis is used to approximate the endemic equilibrium in the important case where the disease related death rate is nonzero, small but significant. A diffusion approximation is used to approximate the quasi-stationary distribution of the associated stochastic model. Numerical simulations show that when $R_0$ is distinctly greater than $1$, the endemic deterministic equilibrium is globally stable. Furthermore, in quasi-stationarity, the stochastic process undergoes oscillations about a mean population whose size can be approximated by the stable endemic deterministic equilibrium.
Citation: G.A. Ngwa. Modelling the dynamics of endemic malaria in growing populations. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 1173-1202. doi: 10.3934/dcdsb.2004.4.1173

Kazuo Aoki, Pierre Charrier, Pierre Degond. A hierarchy of models related to nanoflows and surface diffusion. Kinetic and Related Models, 2011, 4 (1) : 53-85. doi: 10.3934/krm.2011.4.53


Vladimir Gaitsgory, Tanya Tarnopolskaya. Threshold value of the penalty parameter in the minimization of $L_1$-penalized conditional value-at-risk. Journal of Industrial and Management Optimization, 2013, 9 (1) : 191-204. doi: 10.3934/jimo.2013.9.191


Jakub Cupera. Diffusion approximation of neuronal models revisited. Mathematical Biosciences & Engineering, 2014, 11 (1) : 11-25. doi: 10.3934/mbe.2014.11.11


Chengjin Li. Parameter-related projection-based iterative algorithm for a kind of generalized positive semidefinite least squares problem. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 511-520. doi: 10.3934/naco.2020048


Liang Zhang, Zhi-Cheng Wang. Threshold dynamics of a reaction-diffusion epidemic model with stage structure. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3797-3820. doi: 10.3934/dcdsb.2017191


Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4867-4885. doi: 10.3934/dcdsb.2020316


Kunyang Song, Yuping Song, Hanchao Wang. Threshold reweighted Nadaraya–Watson estimation of jump-diffusion models. Probability, Uncertainty and Quantitative Risk, 2022, 7 (1) : 31-44. doi: 10.3934/puqr.2022003


W. E. Fitzgibbon, J. J. Morgan. Analysis of a reaction diffusion model for a reservoir supported spread of infectious disease. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6239-6259. doi: 10.3934/dcdsb.2019137


Wenzhang Huang, Maoan Han, Kaiyu Liu. Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Mathematical Biosciences & Engineering, 2010, 7 (1) : 51-66. doi: 10.3934/mbe.2010.7.51


Dominique Duncan, Thomas Strohmer. Classification of Alzheimer's disease using unsupervised diffusion component analysis. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1119-1130. doi: 10.3934/mbe.2016033


José-Francisco Rodrigues, Lisa Santos. On a constrained reaction-diffusion system related to multiphase problems. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 299-319. doi: 10.3934/dcds.2009.25.299


Liviu I. Ignat, Ademir F. Pazoto. Large time behaviour for a nonlocal diffusion - convection equation related with gas dynamics. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3575-3589. doi: 10.3934/dcds.2014.34.3575


Siwei Duo, Hong Wang, Yanzhi Zhang. A comparative study on nonlocal diffusion operators related to the fractional Laplacian. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 231-256. doi: 10.3934/dcdsb.2018110


Stephen Thompson, Thomas I. Seidman. Approximation of a semigroup model of anomalous diffusion in a bounded set. Evolution Equations and Control Theory, 2013, 2 (1) : 173-192. doi: 10.3934/eect.2013.2.173


Razvan C. Fetecau, Mitchell Kovacic, Ihsan Topaloglu. Swarming in domains with boundaries: Approximation and regularization by nonlinear diffusion. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1815-1842. doi: 10.3934/dcdsb.2018238


Massimiliano Tamborrino. Approximation of the first passage time density of a Wiener process to an exponentially decaying boundary by two-piecewise linear threshold. Application to neuronal spiking activity. Mathematical Biosciences & Engineering, 2016, 13 (3) : 613-629. doi: 10.3934/mbe.2016011


Masaki Kurokiba, Toshitaka Nagai, T. Ogawa. The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system. Communications on Pure and Applied Analysis, 2006, 5 (1) : 97-106. doi: 10.3934/cpaa.2006.5.97


Cyrill B. Muratov, Xing Zhong. Threshold phenomena for symmetric-decreasing radial solutions of reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 915-944. doi: 10.3934/dcds.2017038


Huimin Liang, Peixuan Weng, Yanling Tian. Threshold asymptotic behaviors for a delayed nonlocal reaction-diffusion model of mistletoes and birds in a 2D strip. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1471-1495. doi: 10.3934/cpaa.2016.15.1471


Elio E. Espejo, Masaki Kurokiba, Takashi Suzuki. Blowup threshold and collapse mass separation for a drift-diffusion system in space-dimension two. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2627-2644. doi: 10.3934/cpaa.2013.12.2627

2020 Impact Factor: 1.327


  • PDF downloads (155)
  • HTML views (0)
  • Cited by (31)

Other articles
by authors

[Back to Top]