-
Previous Article
Age-dependent population dynamics diffusive systems
- DCDS-B Home
- This Issue
-
Next Article
Size-structured population dynamics models and their numerical solutions
Inexact Levenberg-Marquardt method for nonlinear equations
1. | Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China |
2. | Department of Mathematics, East China Normal University, Shanghai 200062, China |
[1] |
Haiyan Wang, Jinyan Fan. Convergence properties of inexact Levenberg-Marquardt method under Hölderian local error bound. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2265-2275. doi: 10.3934/jimo.2020068 |
[2] |
Jinyan Fan, Jianyu Pan. On the convergence rate of the inexact Levenberg-Marquardt method. Journal of Industrial and Management Optimization, 2011, 7 (1) : 199-210. doi: 10.3934/jimo.2011.7.199 |
[3] |
Liyan Qi, Xiantao Xiao, Liwei Zhang. On the global convergence of a parameter-adjusting Levenberg-Marquardt method. Numerical Algebra, Control and Optimization, 2015, 5 (1) : 25-36. doi: 10.3934/naco.2015.5.25 |
[4] |
Jinyan Fan. On the Levenberg-Marquardt methods for convex constrained nonlinear equations. Journal of Industrial and Management Optimization, 2013, 9 (1) : 227-241. doi: 10.3934/jimo.2013.9.227 |
[5] |
Xin-He Miao, Kai Yao, Ching-Yu Yang, Jein-Shan Chen. Levenberg-Marquardt method for absolute value equation associated with second-order cone. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 47-61. doi: 10.3934/naco.2021050 |
[6] |
Jirui Ma, Jinyan Fan. On convergence properties of the modified trust region method under Hölderian error bound condition. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021222 |
[7] |
Johann Baumeister, Barbara Kaltenbacher, Antonio Leitão. On Levenberg-Marquardt-Kaczmarz iterative methods for solving systems of nonlinear ill-posed equations. Inverse Problems and Imaging, 2010, 4 (3) : 335-350. doi: 10.3934/ipi.2010.4.335 |
[8] |
Hongxiu Zhong, Guoliang Chen, Xueping Guo. Semi-local convergence of the Newton-HSS method under the center Lipschitz condition. Numerical Algebra, Control and Optimization, 2019, 9 (1) : 85-99. doi: 10.3934/naco.2019007 |
[9] |
Wen-ling Zhao, Dao-jin Song. A global error bound via the SQP method for constrained optimization problem. Journal of Industrial and Management Optimization, 2007, 3 (4) : 775-781. doi: 10.3934/jimo.2007.3.775 |
[10] |
Petr Knobloch. Error estimates for a nonlinear local projection stabilization of transient convection--diffusion--reaction equations. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 901-911. doi: 10.3934/dcdss.2015.8.901 |
[11] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[12] |
Liping Zhang, Soon-Yi Wu, Shu-Cherng Fang. Convergence and error bound of a D-gap function based Newton-type algorithm for equilibrium problems. Journal of Industrial and Management Optimization, 2010, 6 (2) : 333-346. doi: 10.3934/jimo.2010.6.333 |
[13] |
Jing Zhou, Zhibin Deng. A low-dimensional SDP relaxation based spatial branch and bound method for nonconvex quadratic programs. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2087-2102. doi: 10.3934/jimo.2019044 |
[14] |
Shi Jin, Yingda Li. Local sensitivity analysis and spectral convergence of the stochastic Galerkin method for discrete-velocity Boltzmann equations with multi-scales and random inputs. Kinetic and Related Models, 2019, 12 (5) : 969-993. doi: 10.3934/krm.2019037 |
[15] |
Marek Fila, Kazuhiro Ishige, Tatsuki Kawakami. Convergence to the Poisson kernel for the Laplace equation with a nonlinear dynamical boundary condition. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1285-1301. doi: 10.3934/cpaa.2012.11.1285 |
[16] |
Xiaojiao Tong, Shuzi Zhou. A smoothing projected Newton-type method for semismooth equations with bound constraints. Journal of Industrial and Management Optimization, 2005, 1 (2) : 235-250. doi: 10.3934/jimo.2005.1.235 |
[17] |
Kazuhiro Ishige, Ryuichi Sato. Heat equation with a nonlinear boundary condition and uniformly local $L^r$ spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2627-2652. doi: 10.3934/dcds.2016.36.2627 |
[18] |
Tetsu Mizumachi. Instability of bound states for 2D nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 413-428. doi: 10.3934/dcds.2005.13.413 |
[19] |
Jahnabi Chakravarty, Ashiho Athikho, Manideepa Saha. Convergence of interval AOR method for linear interval equations. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 293-308. doi: 10.3934/naco.2021006 |
[20] |
Xiantao Xiao, Liwei Zhang, Jianzhong Zhang. On convergence of augmented Lagrangian method for inverse semi-definite quadratic programming problems. Journal of Industrial and Management Optimization, 2009, 5 (2) : 319-339. doi: 10.3934/jimo.2009.5.319 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]