# American Institute of Mathematical Sciences

May  2004, 4(2): 407-417. doi: 10.3934/dcdsb.2004.4.407

## Modeling the intra-venous glucose tolerance test: A global study for a single-distributed-delay model

 1 Centre for Cellular and Molecular Biology, Hyderabad - 500 007, India 2 BioMath Lab, CNR IASI Fisiopatologia Shock UCSC, L.go A. Gemelli, 8 - 00168 Roma, Italy 3 IRD Bondy et Université de Pau, Paris, France

Received  December 2001 Revised  October 2003 Published  February 2004

The Intra Venous Glucose Tolerance Test (IVGTT) is a simple and established experimental procedure in which a challenge bolus of glucose is administered intra-venously and plasma glucose and insulin concentrations are then frequently sampled. The modeling of the measured concentrations has the goal of providing information on the state of the subject's glucose/insulin control system: an open problem is to construct a model representing simultaneously the entire control system with a physiologically believable qualitative behavior. A previously published single-distributed-delay differential model was shown to have desirable properties (positivity, boundedness, global stability of solutions) under the hypothesis of a specific, square-wave delay integral kernel. The present work extends the previous results to a family of models incorporating a generic non- negative, square integrable normalized kernel. Every model in this family describes the rate of glucose concentration variation as due to both insulin-dependent and insulin-independent net glucose tissue uptake, as well as to constant liver glucose production. The rate of variation of plasma insulin concentration depends on insulin catabolism and on pancreatic insulin secretion. Pancreatic insulin secretion at time $t$ is assumed to depend on the earlier effects of glucose concentrations, up to time $t$ (distributed delay). We consider a non-negative, square integrable normalized weight function $\omega$ on $R^+ =[0, \infty)$ as the fraction of maximal pancreatic insulin secretion at a given glucose concentration. No change in local asymptotic stability is introduced by the time delay. Considering an appropriate Lyapunov functional, it is found that the system is globally asymptotically stable if the average time delay has a parameter- dependent upper bound. An example of good model fit to experimental data is shown using a specific delay kernel.
Citation: Amitava Mukhopadhyay, Andrea De Gaetano, Ovide Arino. Modeling the intra-venous glucose tolerance test: A global study for a single-distributed-delay model. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 407-417. doi: 10.3934/dcdsb.2004.4.407
 [1] Pasquale Palumbo, Simona Panunzi, Andrea De Gaetano. Qualitative behavior of a family of delay-differential models of the Glucose-Insulin system. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 399-424. doi: 10.3934/dcdsb.2007.7.399 [2] Jiaxu Li, Yang Kuang, Bingtuan Li. Analysis of IVGTT glucose-insulin interaction models with time delay. Discrete and Continuous Dynamical Systems - B, 2001, 1 (1) : 103-124. doi: 10.3934/dcdsb.2001.1.103 [3] Tomás Caraballo, Francisco Morillas, José Valero. On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 51-77. doi: 10.3934/dcds.2014.34.51 [4] Janusz Mierczyński, Sylvia Novo, Rafael Obaya. Lyapunov exponents and Oseledets decomposition in random dynamical systems generated by systems of delay differential equations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2235-2255. doi: 10.3934/cpaa.2020098 [5] Ismael Maroto, Carmen NÚÑez, Rafael Obaya. Dynamical properties of nonautonomous functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3939-3961. doi: 10.3934/dcds.2017167 [6] Neville J. Ford, Stewart J. Norton. Predicting changes in dynamical behaviour in solutions to stochastic delay differential equations. Communications on Pure and Applied Analysis, 2006, 5 (2) : 367-382. doi: 10.3934/cpaa.2006.5.367 [7] Saloni Rathee, Nilam. Quantitative analysis of time delays of glucose - insulin dynamics using artificial pancreas. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3115-3129. doi: 10.3934/dcdsb.2015.20.3115 [8] Massimo Barnabei, Alessandro Borri, Andrea De Gaetano, Costanzo Manes, Pasquale Palumbo, Jorge Guerra Pires. A short-term food intake model involving glucose, insulin and ghrelin. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 1913-1926. doi: 10.3934/dcdsb.2021114 [9] Bin Wang, Arieh Iserles. Dirichlet series for dynamical systems of first-order ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 281-298. doi: 10.3934/dcdsb.2014.19.281 [10] Teresa Faria, Rubén Figueroa. Positive periodic solutions for systems of impulsive delay differential equations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022070 [11] Mazyar Ghani Varzaneh, Sebastian Riedel. A dynamical theory for singular stochastic delay differential equations Ⅱ: nonlinear equations and invariant manifolds. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4587-4612. doi: 10.3934/dcdsb.2020304 [12] Pham Huu Anh Ngoc. Stability of nonlinear differential systems with delay. Evolution Equations and Control Theory, 2015, 4 (4) : 493-505. doi: 10.3934/eect.2015.4.493 [13] Michael Dellnitz, Mirko Hessel-Von Molo, Adrian Ziessler. On the computation of attractors for delay differential equations. Journal of Computational Dynamics, 2016, 3 (1) : 93-112. doi: 10.3934/jcd.2016005 [14] Hermann Brunner, Stefano Maset. Time transformations for delay differential equations. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 751-775. doi: 10.3934/dcds.2009.25.751 [15] Klaudiusz Wójcik, Piotr Zgliczyński. Topological horseshoes and delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 827-852. doi: 10.3934/dcds.2005.12.827 [16] María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 473-493. doi: 10.3934/dcdsb.2010.14.473 [17] Yejuan Wang, Lin Yang. Global exponential attraction for multi-valued semidynamical systems with application to delay differential equations without uniqueness. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1961-1987. doi: 10.3934/dcdsb.2018257 [18] A. Domoshnitsky. About maximum principles for one of the components of solution vector and stability for systems of linear delay differential equations. Conference Publications, 2011, 2011 (Special) : 373-380. doi: 10.3934/proc.2011.2011.373 [19] Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521 [20] Serhiy Yanchuk, Leonhard Lücken, Matthias Wolfrum, Alexander Mielke. Spectrum and amplitude equations for scalar delay-differential equations with large delay. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 537-553. doi: 10.3934/dcds.2015.35.537

2020 Impact Factor: 1.327