
Previous Article
Intraspecific interference and consumerresource dynamics
 DCDSB Home
 This Issue

Next Article
Asymptotic behavior of diseasefree equilibriums of an agestructured predatorprey model with disease in the prey
A stochastic model for the dynamics of a stage structured population
1.  ENEA, 19100 La Spezia, Italy 
2.  CNRIMATI, 20133 Milano, Italy 
3.  Dipartimento di Agrochimica e Agrobiologia, Università di Reggio Calabria, 89061 Gallina di Reggio Calabria, Italy 
[1] 
MirosŁaw Lachowicz, Tatiana Ryabukha. Equilibrium solutions for microscopic stochastic systems in population dynamics. Mathematical Biosciences & Engineering, 2013, 10 (3) : 777786. doi: 10.3934/mbe.2013.10.777 
[2] 
Cristina Anton, Alan Yong. Stochastic dynamics and survival analysis of a cell population model with random perturbations. Mathematical Biosciences & Engineering, 2018, 15 (5) : 10771098. doi: 10.3934/mbe.2018048 
[3] 
Simone Göttlich, Stephan Knapp, Peter Schillen. A pedestrian flow model with stochastic velocities: Microscopic and macroscopic approaches. Kinetic & Related Models, 2018, 11 (6) : 13331358. doi: 10.3934/krm.2018052 
[4] 
Peter J. Witbooi, Grant E. Muller, Marshall B. Ongansie, Ibrahim H. I. Ahmed, Kazeem O. Okosun. A stochastic population model of cholera disease. Discrete & Continuous Dynamical Systems  S, 2022, 15 (2) : 441456. doi: 10.3934/dcdss.2021116 
[5] 
Wei Feng, Xin Lu, Richard John Donovan Jr.. Population dynamics in a model for territory acquisition. Conference Publications, 2001, 2001 (Special) : 156165. doi: 10.3934/proc.2001.2001.156 
[6] 
Juan Manuel Pastor, Javier GarcíaAlgarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 5370. doi: 10.3934/nhm.2015.10.53 
[7] 
Jim M. Cushing. The evolutionary dynamics of a population model with a strong Allee effect. Mathematical Biosciences & Engineering, 2015, 12 (4) : 643660. doi: 10.3934/mbe.2015.12.643 
[8] 
Hui Wan, Huaiping Zhu. A new model with delay for mosquito population dynamics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 13951410. doi: 10.3934/mbe.2014.11.1395 
[9] 
Henri Berestycki, JeanMichel Roquejoffre, Luca Rossi. The periodic patch model for population dynamics with fractional diffusion. Discrete & Continuous Dynamical Systems  S, 2011, 4 (1) : 113. doi: 10.3934/dcdss.2011.4.1 
[10] 
Chris Cosner, Andrew L. Nevai. Spatial population dynamics in a producerscrounger model. Discrete & Continuous Dynamical Systems  B, 2015, 20 (6) : 15911607. doi: 10.3934/dcdsb.2015.20.1591 
[11] 
Dianmo Li, Zhen Zhang, Zufei Ma, Baoyu Xie, Rui Wang. Allee effect and a catastrophe model of population dynamics. Discrete & Continuous Dynamical Systems  B, 2004, 4 (3) : 629634. doi: 10.3934/dcdsb.2004.4.629 
[12] 
Sébastien Guisset. Angular moments models for rarefied gas dynamics. Numerical comparisons with kinetic and NavierStokes equations. Kinetic & Related Models, 2020, 13 (4) : 739758. doi: 10.3934/krm.2020025 
[13] 
PaoLiu Chow. Stochastic PDE model for spatial population growth in random environments. Discrete & Continuous Dynamical Systems  B, 2016, 21 (1) : 5565. doi: 10.3934/dcdsb.2016.21.55 
[14] 
Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predatorprey population model with Allee effect on prey. Discrete & Continuous Dynamical Systems  B, 2017, 22 (7) : 26512667. doi: 10.3934/dcdsb.2017129 
[15] 
Hongfu Yang, Xiaoyue Li, George Yin. Permanence and ergodicity of stochastic GilpinAyala population model with regime switching. Discrete & Continuous Dynamical Systems  B, 2016, 21 (10) : 37433766. doi: 10.3934/dcdsb.2016119 
[16] 
Yanan Zhao, Daqing Jiang, Xuerong Mao, Alison Gray. The threshold of a stochastic SIRS epidemic model in a population with varying size. Discrete & Continuous Dynamical Systems  B, 2015, 20 (4) : 12771295. doi: 10.3934/dcdsb.2015.20.1277 
[17] 
Shangzhi Li, Shangjiang Guo. Dynamics of a stagestructured population model with a statedependent delay. Discrete & Continuous Dynamical Systems  B, 2020, 25 (9) : 35233551. doi: 10.3934/dcdsb.2020071 
[18] 
Peixuan Weng, XiaoQiang Zhao. Spatial dynamics of a nonlocal and delayed population model in a periodic habitat. Discrete & Continuous Dynamical Systems, 2011, 29 (1) : 343366. doi: 10.3934/dcds.2011.29.343 
[19] 
Suqi Ma, Qishao Lu, Shuli Mei. Dynamics of a logistic population model with maturation delay and nonlinear birth rate. Discrete & Continuous Dynamical Systems  B, 2005, 5 (3) : 735752. doi: 10.3934/dcdsb.2005.5.735 
[20] 
Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete & Continuous Dynamical Systems  B, 2015, 20 (6) : 17351757. doi: 10.3934/dcdsb.2015.20.1735 
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]