August  2004, 4(3): 527-546. doi: 10.3934/dcdsb.2004.4.527

Intraspecific interference and consumer-resource dynamics


Department of Mathematics, University of Miami, P. O . Box 249085, Coral Gables, FL 33124-4250, United States, United States


Department of Mathematics, The University of Miami, P.O. Box 249085, Coral Gables, Florida 33124

Received  February 2003 Revised  January 2004 Published  May 2004

In this paper we first consider a two consumer-one resource model with one of the consumer species exhibits intraspecific feeding interference but there is no interspecific competition between the two consumer species. We assume that one consumer species exhibits Holling II functional response while the other consumer species exhibits Beddington-DeAngelis functional response. Using dynamical systems theory, it is shown that the two consumer species can coexist upon the single limiting resource in the sense of uniform persistence. Moreover, by constructing a Liapunov function it is shown that the system has a globally stable positive equilibrium. Second, we consider a model with an arbitrary number of consumers and one single limiting resource. By employing practical persistence techniques, it is shown that multiple consumer species can coexist upon a single resource as long as all consumers exhibit sufficiently strong conspecific interference, that is, each of them exhibits Beddington-DeAngelis functional response.
Citation: Robert Stephen Cantrell, Chris Cosner, Shigui Ruan. Intraspecific interference and consumer-resource dynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 527-546. doi: 10.3934/dcdsb.2004.4.527

Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari. Competition for a single resource and coexistence of several species in the chemostat. Mathematical Biosciences & Engineering, 2016, 13 (4) : 631-652. doi: 10.3934/mbe.2016012


Zhong Li, Maoan Han, Fengde Chen. Global stability of a predator-prey system with stage structure and mutual interference. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 173-187. doi: 10.3934/dcdsb.2014.19.173


Hua Nie, Sze-Bi Hsu, Jianhua Wu. Coexistence solutions of a competition model with two species in a water column. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2691-2714. doi: 10.3934/dcdsb.2015.20.2691


Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228


Georg Hetzer, Tung Nguyen, Wenxian Shen. Coexistence and extinction in the Volterra-Lotka competition model with nonlocal dispersal. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1699-1722. doi: 10.3934/cpaa.2012.11.1699


Qi Wang, Yang Song, Lingjie Shao. Boundedness and persistence of populations in advective Lotka-Volterra competition system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2245-2263. doi: 10.3934/dcdsb.2018195


Guihong Fan, Yijun Lou, Horst R. Thieme, Jianhong Wu. Stability and persistence in ODE models for populations with many stages. Mathematical Biosciences & Engineering, 2015, 12 (4) : 661-686. doi: 10.3934/mbe.2015.12.661


Benlong Xu, Hongyan Jiang. Invasion and coexistence of competition-diffusion-advection system with heterogeneous vs homogeneous resources. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4255-4266. doi: 10.3934/dcdsb.2018136


Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013


Wei Feng, Michael T. Cowen, Xin Lu. Coexistence and asymptotic stability in stage-structured predator-prey models. Mathematical Biosciences & Engineering, 2014, 11 (4) : 823-839. doi: 10.3934/mbe.2014.11.823


Liang Kong, Tung Nguyen, Wenxian Shen. Effects of localized spatial variations on the uniform persistence and spreading speeds of time periodic two species competition systems. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1613-1636. doi: 10.3934/cpaa.2019077


Hal L. Smith, Horst R. Thieme. Persistence and global stability for a class of discrete time structured population models. Discrete & Continuous Dynamical Systems, 2013, 33 (10) : 4627-4646. doi: 10.3934/dcds.2013.33.4627


E. Cabral Balreira, Saber Elaydi, Rafael Luís. Local stability implies global stability for the planar Ricker competition model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 323-351. doi: 10.3934/dcdsb.2014.19.323


Chunqing Wu, Patricia J.Y. Wong. Global asymptotical stability of the coexistence fixed point of a Ricker-type competitive model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3255-3266. doi: 10.3934/dcdsb.2015.20.3255


Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084


Kousuke Kuto. Stability and Hopf bifurcation of coexistence steady-states to an SKT model in spatially heterogeneous environment. Discrete & Continuous Dynamical Systems, 2009, 24 (2) : 489-509. doi: 10.3934/dcds.2009.24.489


Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315


Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002


Antoine Perasso. Global stability and uniform persistence for an infection load-structured SI model with exponential growth velocity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 15-32. doi: 10.3934/cpaa.2019002


Kazuo Yamazaki, Xueying Wang. Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 559-579. doi: 10.3934/mbe.2017033

2020 Impact Factor: 1.327


  • PDF downloads (146)
  • HTML views (0)
  • Cited by (36)

[Back to Top]