
Previous Article
Macrophagetumour interactions: In vivo dynamics
 DCDSB Home
 This Issue

Next Article
A mathematical model of tumorimmune evasion and siRNA treatment
From a class of kinetic models to the macroscopic equations for multicellular systems in biology
1.  Department of Mathematics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy, Italy 
[1] 
Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : . doi: 10.3934/krm.2020051 
[2] 
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020451 
[3] 
PierreEtienne Druet. A theory of generalised solutions for ideal gas mixtures with MaxwellStefan diffusion. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020458 
[4] 
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : . doi: 10.3934/cpaa.2020276 
[5] 
Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems  A, 2021, 41 (1) : 6186. doi: 10.3934/dcds.2020218 
[6] 
Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic FisherKPP equations. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020323 
[7] 
Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 56095626. doi: 10.3934/cpaa.2020256 
[8] 
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020450 
[9] 
Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1326. doi: 10.3934/naco.2020012 
[10] 
Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, FatimaZahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020434 
[11] 
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020461 
[12] 
Yichen Zhang, Meiqiang Feng. A coupled $ p $Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 14191438. doi: 10.3934/era.2020075 
[13] 
Hoang The Tuan. On the asymptotic behavior of solutions to timefractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020318 
[14] 
Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : . doi: 10.3934/era.2020119 
[15] 
Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems  A, 2020 doi: 10.3934/dcds.2020375 
[16] 
João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems  A, 2021, 41 (1) : 277296. doi: 10.3934/dcds.2020138 
[17] 
Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear timeinvariant control systems. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020444 
[18] 
Shiqi Ma. On recent progress of singlerealization recoveries of random Schrödinger systems. Electronic Research Archive, , () : . doi: 10.3934/era.2020121 
[19] 
Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems  A, 2020 doi: 10.3934/dcds.2020379 
[20] 
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020436 
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]