August  2004, 4(3): 623-628. doi: 10.3934/dcdsb.2004.4.623

Two general models for the simulation of insect population dynamics


The National Laboratory of Integrated Management of Insect and Rodent Pests in Agriculture, Institute of Zoology, Chinese Academy of Sciences Beijing 100080, China, China, China, China, China

Received  November 2002 Revised  October 2003 Published  May 2004

Detailed studies of single species population dynamics are important for understanding population behaviour and the analysis of large complex ecosystems. Here we present two general models for simulating insect population dynamics: The distributed delay processes and Poisson Process models. In the distributed delay processes model, the simulated population has the characteristic property that the time required for maturation from one stage of growth (instar) to another is directly related to ambient temperature. In this model the parameters DEL and K are significant to the simulated process. The discrete Poisson model deals with the individual development of a group of free entities with random forward movement. These two general component models can be used to simulate the population growth of many insects currently the subject of research interest. The application of distributed delay processes to dynamics of cotton bollworm helicoverpa armigera is presented. The results show the simulation data quite "fit" the observed data.
Citation: Dianmo Li, Zengxiang Gao, Zufei Ma, Baoyu Xie, Zhengjun Wang. Two general models for the simulation of insect population dynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 623-628. doi: 10.3934/dcdsb.2004.4.623

Edoardo Beretta, Dimitri Breda. Discrete or distributed delay? Effects on stability of population growth. Mathematical Biosciences & Engineering, 2016, 13 (1) : 19-41. doi: 10.3934/mbe.2016.13.19


Jacques Henry. For which objective is birth process an optimal feedback in age structured population dynamics?. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 107-114. doi: 10.3934/dcdsb.2007.8.107


Cecilia Cavaterra, Maurizio Grasselli. Asymptotic behavior of population dynamics models with nonlocal distributed delays. Discrete & Continuous Dynamical Systems, 2008, 22 (4) : 861-883. doi: 10.3934/dcds.2008.22.861


Alfonso Ruiz-Herrera. Chaos in delay differential equations with applications in population dynamics. Discrete & Continuous Dynamical Systems, 2013, 33 (4) : 1633-1644. doi: 10.3934/dcds.2013.33.1633


Hui Wan, Huaiping Zhu. A new model with delay for mosquito population dynamics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1395-1410. doi: 10.3934/mbe.2014.11.1395


Lin Zhao, Zhi-Cheng Wang, Liang Zhang. Threshold dynamics of a time periodic and two–group epidemic model with distributed delay. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1535-1563. doi: 10.3934/mbe.2017080


Cecilia Cavaterra, M. Grasselli. Robust exponential attractors for population dynamics models with infinite time delay. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1051-1076. doi: 10.3934/dcdsb.2006.6.1051


Shangzhi Li, Shangjiang Guo. Dynamics of a stage-structured population model with a state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3523-3551. doi: 10.3934/dcdsb.2020071


Suqi Ma, Qishao Lu, Shuli Mei. Dynamics of a logistic population model with maturation delay and nonlinear birth rate. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 735-752. doi: 10.3934/dcdsb.2005.5.735


Gang Huang, Yasuhiro Takeuchi, Rinko Miyazaki. Stability conditions for a class of delay differential equations in single species population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2451-2464. doi: 10.3934/dcdsb.2012.17.2451


Tomas Alarcon, Philipp Getto, Anna Marciniak-Czochra, Maria dM Vivanco. A model for stem cell population dynamics with regulated maturation delay. Conference Publications, 2011, 2011 (Special) : 32-43. doi: 10.3934/proc.2011.2011.32


Oliver Knill. A deterministic displacement theorem for Poisson processes. Electronic Research Announcements, 1997, 3: 110-113.


Mostafa Adimy, Fabien Crauste. Modeling and asymptotic stability of a growth factor-dependent stem cell dynamics model with distributed delay. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 19-38. doi: 10.3934/dcdsb.2007.8.19


Min Yu, Gang Huang, Yueping Dong, Yasuhiro Takeuchi. Complicated dynamics of tumor-immune system interaction model with distributed time delay. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2391-2406. doi: 10.3934/dcdsb.2020015


Tarik Mohammed Touaoula. Global dynamics for a class of reaction-diffusion equations with distributed delay and neumann condition. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2473-2490. doi: 10.3934/cpaa.2020108


Jacek Banasiak, Wilson Lamb. Coagulation, fragmentation and growth processes in a size structured population. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 563-585. doi: 10.3934/dcdsb.2009.11.563


Ning Chen, Yan Xia Zhao, Jia Yang Dai, Yu Qian Guo, Wei Hua Gui, Jun Jie Peng. Hybrid modeling and distributed optimization control method for the iron removal process. Journal of Industrial & Management Optimization, 2022  doi: 10.3934/jimo.2022003


Andrea Caravaggio, Luca Gori, Mauro Sodini. Population dynamics and economic development. Discrete & Continuous Dynamical Systems - B, 2021, 26 (11) : 5827-5848. doi: 10.3934/dcdsb.2021178


Tomás Caraballo, Renato Colucci, Luca Guerrini. On a predator prey model with nonlinear harvesting and distributed delay. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2703-2727. doi: 10.3934/cpaa.2018128


Leonid Berezansky, Elena Braverman. Stability of linear differential equations with a distributed delay. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1361-1375. doi: 10.3934/cpaa.2011.10.1361

2020 Impact Factor: 1.327


  • PDF downloads (149)
  • HTML views (0)
  • Cited by (2)

[Back to Top]