
Previous Article
Persistence and periodic solutions of a nonautonomous predatorprey diffusion with Holling III functional response and continuous delay
 DCDSB Home
 This Issue

Next Article
Stability analysis for SIS epidemic models with vaccination and constant population size
Global stability of an agestructured SIRS epidemic model with vaccination
1.  Department of Mathematics, Xinjiang University, Urumqi 830046, China 
2.  Department of Mathematics, Xinyang Teachers College, Henan 464000, China 
[1] 
Yuming Chen, Junyuan Yang, Fengqin Zhang. The global stability of an SIRS model with infection age. Mathematical Biosciences & Engineering, 2014, 11 (3) : 449469. doi: 10.3934/mbe.2014.11.449 
[2] 
Hao Kang, Qimin Huang, Shigui Ruan. Periodic solutions of an agestructured epidemic model with periodic infection rate. Communications on Pure & Applied Analysis, 2020, 19 (10) : 49554972. doi: 10.3934/cpaa.2020220 
[3] 
Jianxin Yang, Zhipeng Qiu, XueZhi Li. Global stability of an agestructured cholera model. Mathematical Biosciences & Engineering, 2014, 11 (3) : 641665. doi: 10.3934/mbe.2014.11.641 
[4] 
Andrea Franceschetti, Andrea Pugliese, Dimitri Breda. Multiple endemic states in agestructured $SIR$ epidemic models. Mathematical Biosciences & Engineering, 2012, 9 (3) : 577599. doi: 10.3934/mbe.2012.9.577 
[5] 
Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an agestructured virus dynamics model with BeddingtonDeAngelis infection function. Mathematical Biosciences & Engineering, 2015, 12 (4) : 859877. doi: 10.3934/mbe.2015.12.859 
[6] 
XueZhi Li, JiXuan Liu, Maia Martcheva. An agestructured twostrain epidemic model with superinfection. Mathematical Biosciences & Engineering, 2010, 7 (1) : 123147. doi: 10.3934/mbe.2010.7.123 
[7] 
Jinliang Wang, Jiying Lang, Yuming Chen. Global dynamics of an agestructured HIV infection model incorporating latency and celltocell transmission. Discrete & Continuous Dynamical Systems  B, 2017, 22 (10) : 37213747. doi: 10.3934/dcdsb.2017186 
[8] 
Mohammed Nor Frioui, Tarik Mohammed Touaoula, Bedreddine Ainseba. Global dynamics of an agestructured model with relapse. Discrete & Continuous Dynamical Systems  B, 2020, 25 (6) : 22452270. doi: 10.3934/dcdsb.2019226 
[9] 
Toshikazu Kuniya, Mimmo Iannelli. $R_0$ and the global behavior of an agestructured SIS epidemic model with periodicity and vertical transmission. Mathematical Biosciences & Engineering, 2014, 11 (4) : 929945. doi: 10.3934/mbe.2014.11.929 
[10] 
Georgi Kapitanov. A double agestructured model of the coinfection of tuberculosis and HIV. Mathematical Biosciences & Engineering, 2015, 12 (1) : 2340. doi: 10.3934/mbe.2015.12.23 
[11] 
Hossein Mohebbi, Azim Aminataei, Cameron J. Browne, Mohammad Reza Razvan. Hopf bifurcation of an agestructured virus infection model. Discrete & Continuous Dynamical Systems  B, 2018, 23 (2) : 861885. doi: 10.3934/dcdsb.2018046 
[12] 
Yoshiaki Muroya, Toshikazu Kuniya, Yoichi Enatsu. Global stability of a delayed multigroup SIRS epidemic model with nonlinear incidence rates and relapse of infection. Discrete & Continuous Dynamical Systems  B, 2015, 20 (9) : 30573091. doi: 10.3934/dcdsb.2015.20.3057 
[13] 
Dimitri Breda, Stefano Maset, Rossana Vermiglio. Numerical recipes for investigating endemic equilibria of agestructured SIR epidemics. Discrete & Continuous Dynamical Systems  A, 2012, 32 (8) : 26752699. doi: 10.3934/dcds.2012.32.2675 
[14] 
Hisashi Inaba. Mathematical analysis of an agestructured SIR epidemic model with vertical transmission. Discrete & Continuous Dynamical Systems  B, 2006, 6 (1) : 6996. doi: 10.3934/dcdsb.2006.6.69 
[15] 
Yukihiko Nakata, Yoichi Enatsu, Yoshiaki Muroya. On the global stability of an SIRS epidemic model with distributed delays. Conference Publications, 2011, 2011 (Special) : 11191128. doi: 10.3934/proc.2011.2011.1119 
[16] 
Yicang Zhou, Zhien Ma. Global stability of a class of discrete agestructured SIS models with immigration. Mathematical Biosciences & Engineering, 2009, 6 (2) : 409425. doi: 10.3934/mbe.2009.6.409 
[17] 
Shengqin Xu, Chuncheng Wang, Dejun Fan. Stability and bifurcation in an agestructured model with stocking rate and time delays. Discrete & Continuous Dynamical Systems  B, 2019, 24 (6) : 25352549. doi: 10.3934/dcdsb.2018264 
[18] 
Cameron J. Browne, Sergei S. Pilyugin. Global analysis of agestructured withinhost virus model. Discrete & Continuous Dynamical Systems  B, 2013, 18 (8) : 19992017. doi: 10.3934/dcdsb.2013.18.1999 
[19] 
HeeDae Kwon, Jeehyun Lee, Myoungho Yoon. An agestructured model with immune response of HIV infection: Modeling and optimal control approach. Discrete & Continuous Dynamical Systems  B, 2014, 19 (1) : 153172. doi: 10.3934/dcdsb.2014.19.153 
[20] 
YanXia Dang, ZhiPeng Qiu, XueZhi Li, Maia Martcheva. Global dynamics of a vectorhost epidemic model with age of infection. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 11591186. doi: 10.3934/mbe.2017060 
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]