August  2004, 4(3): 679-686. doi: 10.3934/dcdsb.2004.4.679

Quantifying the danger for Parnassius nomion on Beijing Dongling mountain

1. 

The National Laboratory of Integrated Management of Insect and Rodent Pests in Agriculture, Institute of Zoology, Chinese Academy of Sciences Beijing 100080

Received  November 2002 Revised  January 2004 Published  May 2004

It is the major task of the researches of conservation biology to explore species existing necessary conditions and endanger mechanism [1]. Presently, population viability analysis models mainly focus on a single species and few of them take into account the influence of inter-species effect to aimed species [2][3]. It is more difficult to apply traditional population viability analysis to insects, as compared to birds or mammals. First, insects have complex life histories, small body and various species. For animals that have body length between 10m and 1cm, the number of the species increases by 100 times with the body length shorten by 1/10 [4]. Biologists' knowledge is far from completely understanding insect species, or even the number of insect, because it is very difficult to obtain the life parameters of wild insect populations. Second, biologists are accustomed to study the key species of the community, which are often the topmost taxa in biology chain or the dominant species in communities. These insect species are rare to be found playing a key role independently in ecosystem maintenance or community succession. Last, many insect species have become extinct before people know them well. The efficient and comprehensive approach is required to detect why the population of some insect specify is descending and what kind of protective strategies should be applied. In this paper, we have proposed the competition index of Parmassius nomion species by combining the aimed species population dynamics with the diversity index. The results have shown that the alteration of competition index is able to detect the danger of shrinking population.
Citation: Dianmo Li, Zufei Ma, Baoyu Xie. Quantifying the danger for Parnassius nomion on Beijing Dongling mountain. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 679-686. doi: 10.3934/dcdsb.2004.4.679
[1]

Dianmo Li, Zengxiang Gao, Zufei Ma, Baoyu Xie, Zhengjun Wang. Two general models for the simulation of insect population dynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 623-628. doi: 10.3934/dcdsb.2004.4.623

[2]

Yuan Lou, Daniel Munther. Dynamics of a three species competition model. Discrete & Continuous Dynamical Systems, 2012, 32 (9) : 3099-3131. doi: 10.3934/dcds.2012.32.3099

[3]

Yuyue Zhang, Jicai Huang, Qihua Huang. The impact of toxins on competition dynamics of three species in a polluted aquatic environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3043-3068. doi: 10.3934/dcdsb.2020219

[4]

Kuang-Hui Lin, Yuan Lou, Chih-Wen Shih, Tze-Hung Tsai. Global dynamics for two-species competition in patchy environment. Mathematical Biosciences & Engineering, 2014, 11 (4) : 947-970. doi: 10.3934/mbe.2014.11.947

[5]

Linfeng Mei, Feng-Bin Wang. Dynamics of phytoplankton species competition for light and nutrient with recycling in a water column. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 2115-2132. doi: 10.3934/dcdsb.2020359

[6]

Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, 2021, 20 (2) : 755-762. doi: 10.3934/cpaa.2020288

[7]

Gang Huang, Yasuhiro Takeuchi, Rinko Miyazaki. Stability conditions for a class of delay differential equations in single species population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2451-2464. doi: 10.3934/dcdsb.2012.17.2451

[8]

Xinyu Tu, Chunlai Mu, Pan Zheng, Ke Lin. Global dynamics in a two-species chemotaxis-competition system with two signals. Discrete & Continuous Dynamical Systems, 2018, 38 (7) : 3617-3636. doi: 10.3934/dcds.2018156

[9]

Donald L. DeAngelis, Bo Zhang. Effects of dispersal in a non-uniform environment on population dynamics and competition: A patch model approach. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3087-3104. doi: 10.3934/dcdsb.2014.19.3087

[10]

Salvatore Rionero. A nonlinear $L^2$-stability analysis for two-species population dynamics with dispersal. Mathematical Biosciences & Engineering, 2006, 3 (1) : 189-204. doi: 10.3934/mbe.2006.3.189

[11]

Chuangxia Huang, Lihong Huang, Jianhong Wu. Global population dynamics of a single species structured with distinctive time-varying maturation and self-limitation delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021138

[12]

Georg Hetzer, Wenxian Shen. Two species competition with an inhibitor involved. Discrete & Continuous Dynamical Systems, 2005, 12 (1) : 39-57. doi: 10.3934/dcds.2005.12.39

[13]

Luis F. Gordillo. Optimal sterile insect release for area-wide integrated pest management in a density regulated pest population. Mathematical Biosciences & Engineering, 2014, 11 (3) : 511-521. doi: 10.3934/mbe.2014.11.511

[14]

Chiun-Chuan Chen, Li-Chang Hung, Chen-Chih Lai. An N-barrier maximum principle for autonomous systems of $n$ species and its application to problems arising from population dynamics. Communications on Pure & Applied Analysis, 2019, 18 (1) : 33-50. doi: 10.3934/cpaa.2019003

[15]

Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari. Competition for a single resource and coexistence of several species in the chemostat. Mathematical Biosciences & Engineering, 2016, 13 (4) : 631-652. doi: 10.3934/mbe.2016012

[16]

Hua Nie, Yuan Lou, Jianhua Wu. Competition between two similar species in the unstirred chemostat. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 621-639. doi: 10.3934/dcdsb.2016.21.621

[17]

Chiu-Ju Lin. Competition of two phytoplankton species for light with wavelength. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 523-536. doi: 10.3934/dcdsb.2016.21.523

[18]

Jifa Jiang, Fensidi Tang. The complete classification on a model of two species competition with an inhibitor. Discrete & Continuous Dynamical Systems, 2008, 20 (3) : 659-672. doi: 10.3934/dcds.2008.20.659

[19]

Andrea Caravaggio, Luca Gori, Mauro Sodini. Population dynamics and economic development. Discrete & Continuous Dynamical Systems - B, 2021, 26 (11) : 5827-5848. doi: 10.3934/dcdsb.2021178

[20]

Hua Nie, Sze-Bi Hsu, Jianhua Wu. Coexistence solutions of a competition model with two species in a water column. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2691-2714. doi: 10.3934/dcdsb.2015.20.2691

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]