-
Previous Article
A continuous density Kolmogorov type model for a migrating fish stock
- DCDS-B Home
- This Issue
-
Next Article
Quantifying the danger for Parnassius nomion on Beijing Dongling mountain
Is there a sigmoid growth of Gause's Paramecium caudatum in constant environment
1. | The National Laboratory of Integrated Management of Insect and Rodent Pests in Agriculture, Institute of Zoology, Chinese Academy of Sciences Beijing 100080 |
[1] |
Yuri Kifer. Ergodic theorems for nonconventional arrays and an extension of the Szemerédi theorem. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2687-2716. doi: 10.3934/dcds.2018113 |
[2] |
Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations and Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013 |
[3] |
Feng Qi, Bai-Ni Guo. Completely monotonic functions involving divided differences of the di- and tri-gamma functions and some applications. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1975-1989. doi: 10.3934/cpaa.2009.8.1975 |
[4] |
Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control and Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017 |
[5] |
Sebastián Ferrer, Martin Lara. Families of canonical transformations by Hamilton-Jacobi-Poincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223-241. doi: 10.3934/jgm.2010.2.223 |
[6] |
Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159 |
[7] |
Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control and Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73 |
[8] |
Matteo Costantini, André Kappes. The equation of the Kenyon-Smillie (2, 3, 4)-Teichmüller curve. Journal of Modern Dynamics, 2017, 11: 17-41. doi: 10.3934/jmd.2017002 |
[9] |
Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388 |
[10] |
Anouar El Harrak, Hatim Tayeq, Amal Bergam. A posteriori error estimates for a finite volume scheme applied to a nonlinear reaction-diffusion equation in population dynamics. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2183-2197. doi: 10.3934/dcdss.2021062 |
[11] |
Chuangxia Huang, Xiaojin Guo, Jinde Cao, Ardak Kashkynbayev. Bistable dynamics on a tick population equation incorporating Allee effect and two different time-varying delays. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022122 |
[12] |
Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3419-3440. doi: 10.3934/dcdss.2020426 |
[13] |
Atul Narang, Sergei S. Pilyugin. Toward an Integrated Physiological Theory of Microbial Growth: From Subcellular Variables to Population Dynamics. Mathematical Biosciences & Engineering, 2005, 2 (1) : 169-206. doi: 10.3934/mbe.2005.2.169 |
[14] |
Frédérique Billy, Jean Clairambault, Franck Delaunay, Céline Feillet, Natalia Robert. Age-structured cell population model to study the influence of growth factors on cell cycle dynamics. Mathematical Biosciences & Engineering, 2013, 10 (1) : 1-17. doi: 10.3934/mbe.2013.10.1 |
[15] |
Linfeng Mei, Wei Dong, Changhe Guo. Concentration phenomenon in a nonlocal equation modeling phytoplankton growth. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 587-597. doi: 10.3934/dcdsb.2015.20.587 |
[16] |
J. Leonel Rocha, Sandra M. Aleixo. Dynamical analysis in growth models: Blumberg's equation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 783-795. doi: 10.3934/dcdsb.2013.18.783 |
[17] |
Proscovia Namayanja. Chaotic dynamics in a transport equation on a network. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3415-3426. doi: 10.3934/dcdsb.2018283 |
[18] |
Viktor I. Gerasimenko, Igor V. Gapyak. Hard sphere dynamics and the Enskog equation. Kinetic and Related Models, 2012, 5 (3) : 459-484. doi: 10.3934/krm.2012.5.459 |
[19] |
Genni Fragnelli, A. Idrissi, L. Maniar. The asymptotic behavior of a population equation with diffusion and delayed birth process. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 735-754. doi: 10.3934/dcdsb.2007.7.735 |
[20] |
Jitendra Kumar, Gurmeet Kaur, Evangelos Tsotsas. An accurate and efficient discrete formulation of aggregation population balance equation. Kinetic and Related Models, 2016, 9 (2) : 373-391. doi: 10.3934/krm.2016.9.373 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]