-
Previous Article
Noise and productivity dependence of spatiotemporal pattern formation in a prey-predator system
- DCDS-B Home
- This Issue
-
Next Article
Is there a sigmoid growth of Gause's Paramecium caudatum in constant environment
A continuous density Kolmogorov type model for a migrating fish stock
1. | Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavík, Iceland, Iceland, Iceland, Iceland, Iceland |
[1] |
Wafa Hamrouni, Ali Abdennadher. Random walk's models for fractional diffusion equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2509-2530. doi: 10.3934/dcdsb.2016058 |
[2] |
Edward Belbruno. Random walk in the three-body problem and applications. Discrete and Continuous Dynamical Systems - S, 2008, 1 (4) : 519-540. doi: 10.3934/dcdss.2008.1.519 |
[3] |
Brendan Weickert. Infinite-dimensional complex dynamics: A quantum random walk. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 517-524. doi: 10.3934/dcds.2001.7.517 |
[4] |
Samuel Herrmann, Nicolas Massin. Exit problem for Ornstein-Uhlenbeck processes: A random walk approach. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3199-3215. doi: 10.3934/dcdsb.2020058 |
[5] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2891-2905. doi: 10.3934/dcds.2020390 |
[6] |
Kumiko Hattori, Noriaki Ogo, Takafumi Otsuka. A family of self-avoiding random walks interpolating the loop-erased random walk and a self-avoiding walk on the Sierpiński gasket. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : 289-311. doi: 10.3934/dcdss.2017014 |
[7] |
Tomás Caraballo, Renato Colucci, Xiaoying Han. Semi-Kolmogorov models for predation with indirect effects in random environments. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2129-2143. doi: 10.3934/dcdsb.2016040 |
[8] |
Nguyen Huu Du, Nguyen Hai Dang. Asymptotic behavior of Kolmogorov systems with predator-prey type in random environment. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2693-2712. doi: 10.3934/cpaa.2014.13.2693 |
[9] |
Antoine Conze, Nicolas Lantos, Olivier Pironneau. The forward Kolmogorov equation for two dimensional options. Communications on Pure and Applied Analysis, 2009, 8 (1) : 195-208. doi: 10.3934/cpaa.2009.8.195 |
[10] |
Tracy L. Stepien, Hal L. Smith. Existence and uniqueness of similarity solutions of a generalized heat equation arising in a model of cell migration. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3203-3216. doi: 10.3934/dcds.2015.35.3203 |
[11] |
Wolfgang Wagner. A random cloud model for the Wigner equation. Kinetic and Related Models, 2016, 9 (1) : 217-235. doi: 10.3934/krm.2016.9.217 |
[12] |
Luigi Ambrosio, Luis A. Caffarelli, A. Maugeri. Preface: A beautiful walk in the way of the understanding. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : i-vi. doi: 10.3934/dcds.2011.31.4i |
[13] |
Eric A. Carlen, Maria C. Carvalho, Amit Einav. Entropy production inequalities for the Kac Walk. Kinetic and Related Models, 2018, 11 (2) : 219-238. doi: 10.3934/krm.2018012 |
[14] |
Jianhai Bao, Xing Huang, Chenggui Yuan. New regularity of kolmogorov equation and application on approximation of semi-linear spdes with Hölder continuous drifts. Communications on Pure and Applied Analysis, 2019, 18 (1) : 341-360. doi: 10.3934/cpaa.2019018 |
[15] |
Julien Dambrine, Nicolas Meunier, Bertrand Maury, Aude Roudneff-Chupin. A congestion model for cell migration. Communications on Pure and Applied Analysis, 2012, 11 (1) : 243-260. doi: 10.3934/cpaa.2012.11.243 |
[16] |
Tzong-Yow Lee and Fred Torcaso. Wave propagation in a lattice KPP equation in random media. Electronic Research Announcements, 1997, 3: 121-125. |
[17] |
Dan Stanescu, Benito Chen-Charpentier. Random coefficient differential equation models for Monod kinetics. Conference Publications, 2009, 2009 (Special) : 719-728. doi: 10.3934/proc.2009.2009.719 |
[18] |
Wolfgang Wagner. A random cloud model for the Schrödinger equation. Kinetic and Related Models, 2014, 7 (2) : 361-379. doi: 10.3934/krm.2014.7.361 |
[19] |
Julia Calatayud, Juan Carlos Cortés, Marc Jornet. On the random wave equation within the mean square context. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 409-425. doi: 10.3934/dcdss.2021082 |
[20] |
John Hubbard, Yulij Ilyashenko. A proof of Kolmogorov's theorem. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 367-385. doi: 10.3934/dcds.2004.10.367 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]