-
Previous Article
Correspondence analysis of body form characteristics of Chinese ethnic groups
- DCDS-B Home
- This Issue
-
Next Article
Ratio-dependent predator-prey system with stage structure for prey
Modelling and analysis of integrated pest management strategy
1. | Institute of Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, China, China |
[1] |
Benjamin B. Kennedy. Multiple periodic solutions of state-dependent threshold delay equations. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1801-1833. doi: 10.3934/dcds.2012.32.1801 |
[2] |
Jan Sieber. Finding periodic orbits in state-dependent delay differential equations as roots of algebraic equations. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2607-2651. doi: 10.3934/dcds.2012.32.2607 |
[3] |
Hans-Otto Walther. On solution manifolds of differential systems with discrete state-dependent delays. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022108 |
[4] |
Odo Diekmann, Karolína Korvasová. Linearization of solution operators for state-dependent delay equations: A simple example. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 137-149. doi: 10.3934/dcds.2016.36.137 |
[5] |
Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687 |
[6] |
Tibor Krisztin. A local unstable manifold for differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 993-1028. doi: 10.3934/dcds.2003.9.993 |
[7] |
Qingwen Hu, Bernhard Lani-Wayda, Eugen Stumpf. Preface: Delay differential equations with state-dependent delays and their applications. Discrete and Continuous Dynamical Systems - S, 2020, 13 (1) : i-i. doi: 10.3934/dcdss.20201i |
[8] |
Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445 |
[9] |
Ismael Maroto, Carmen NÚÑez, Rafael Obaya. Dynamical properties of nonautonomous functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3939-3961. doi: 10.3934/dcds.2017167 |
[10] |
Redouane Qesmi, Hans-Otto Walther. Center-stable manifolds for differential equations with state-dependent delays. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 1009-1033. doi: 10.3934/dcds.2009.23.1009 |
[11] |
Hermann Brunner, Stefano Maset. Time transformations for state-dependent delay differential equations. Communications on Pure and Applied Analysis, 2010, 9 (1) : 23-45. doi: 10.3934/cpaa.2010.9.23 |
[12] |
Ferenc Hartung, Janos Turi. Linearized stability in functional differential equations with state-dependent delays. Conference Publications, 2001, 2001 (Special) : 416-425. doi: 10.3934/proc.2001.2001.416 |
[13] |
Ferenc Hartung. Parameter estimation by quasilinearization in differential equations with state-dependent delays. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1611-1631. doi: 10.3934/dcdsb.2013.18.1611 |
[14] |
Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169 |
[15] |
Benjamin B. Kennedy. A periodic solution with non-simple oscillation for an equation with state-dependent delay and strictly monotonic negative feedback. Discrete and Continuous Dynamical Systems - S, 2020, 13 (1) : 47-66. doi: 10.3934/dcdss.2020003 |
[16] |
Qingwen Hu. A model of regulatory dynamics with threshold-type state-dependent delay. Mathematical Biosciences & Engineering, 2018, 15 (4) : 863-882. doi: 10.3934/mbe.2018039 |
[17] |
F. M. G. Magpantay, A. R. Humphries. Generalised Lyapunov-Razumikhin techniques for scalar state-dependent delay differential equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (1) : 85-104. doi: 10.3934/dcdss.2020005 |
[18] |
Jitai Liang, Ben Niu, Junjie Wei. Linearized stability for abstract functional differential equations subject to state-dependent delays with applications. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6167-6188. doi: 10.3934/dcdsb.2019134 |
[19] |
Xiuli Sun, Rong Yuan, Yunfei Lv. Global Hopf bifurcations of neutral functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 667-700. doi: 10.3934/dcdsb.2018038 |
[20] |
A. R. Humphries, O. A. DeMasi, F. M. G. Magpantay, F. Upham. Dynamics of a delay differential equation with multiple state-dependent delays. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2701-2727. doi: 10.3934/dcds.2012.32.2701 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]