August  2004, 4(3): 797-804. doi: 10.3934/dcdsb.2004.4.797

Population dispersal and disease spread

1. 

Department of Mathematics, Southwest Normal University, Chongqing, 400715, China

Received  February 2003 Revised  December 2003 Published  May 2004

An epidemic model is studied to understand the effect of a population dispersal on the spread of a disease in two patches. Under the assumption that the dispersal of infectious individuals is barred, it is found that susceptive dispersal may cause the spread of the disease in one patch even though the disease dies out in each isolated patch. For the case where the disease spreads in each isolated patch, it is shown that suitable susceptive dispersal can lead to the extinction of the disease in one patch.
Citation: Wendi Wang. Population dispersal and disease spread. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 797-804. doi: 10.3934/dcdsb.2004.4.797
[1]

Long Zhang, Gao Xu, Zhidong Teng. Intermittent dispersal population model with almost period parameters and dispersal delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 2011-2037. doi: 10.3934/dcdsb.2016034

[2]

Fei-Ying Yang, Wan-Tong Li. Dynamics of a nonlocal dispersal SIS epidemic model. Communications on Pure & Applied Analysis, 2017, 16 (3) : 781-798. doi: 10.3934/cpaa.2017037

[3]

Fei-Ying Yang, Yan Li, Wan-Tong Li, Zhi-Cheng Wang. Traveling waves in a nonlocal dispersal Kermack-McKendrick epidemic model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1969-1993. doi: 10.3934/dcdsb.2013.18.1969

[4]

Wan-Tong Li, Wen-Bing Xu, Li Zhang. Traveling waves and entire solutions for an epidemic model with asymmetric dispersal. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2483-2512. doi: 10.3934/dcds.2017107

[5]

Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a size-structured population model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 831-840. doi: 10.3934/dcdsb.2017041

[6]

Zhiting Xu. Traveling waves in an SEIR epidemic model with the variable total population. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3723-3742. doi: 10.3934/dcdsb.2016118

[7]

Toshikazu Kuniya, Yoshiaki Muroya. Global stability of a multi-group SIS epidemic model for population migration. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1105-1118. doi: 10.3934/dcdsb.2014.19.1105

[8]

Yanan Zhao, Daqing Jiang, Xuerong Mao, Alison Gray. The threshold of a stochastic SIRS epidemic model in a population with varying size. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1277-1295. doi: 10.3934/dcdsb.2015.20.1277

[9]

Kazuo Yamazaki, Xueying Wang. Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 559-579. doi: 10.3934/mbe.2017033

[10]

Donald L. DeAngelis, Bo Zhang. Effects of dispersal in a non-uniform environment on population dynamics and competition: A patch model approach. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3087-3104. doi: 10.3934/dcdsb.2014.19.3087

[11]

Song Liang, Yuan Lou. On the dependence of population size upon random dispersal rate. Discrete & Continuous Dynamical Systems - B, 2012, 17 (8) : 2771-2788. doi: 10.3934/dcdsb.2012.17.2771

[12]

Qun Liu, Daqing Jiang. Dynamics of a multigroup SIRS epidemic model with random perturbations and varying total population size. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1089-1110. doi: 10.3934/cpaa.2020050

[13]

Suqi Ma. Low viral persistence of an immunological model. Mathematical Biosciences & Engineering, 2012, 9 (4) : 809-817. doi: 10.3934/mbe.2012.9.809

[14]

Carlota Rebelo, Alessandro Margheri, Nicolas Bacaër. Persistence in some periodic epidemic models with infection age or constant periods of infection. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1155-1170. doi: 10.3934/dcdsb.2014.19.1155

[15]

Francisco de la Hoz, Anna Doubova, Fernando Vadillo. Persistence-time estimation for some stochastic SIS epidemic models. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2933-2947. doi: 10.3934/dcdsb.2015.20.2933

[16]

Hal L. Smith, Horst R. Thieme. Persistence and global stability for a class of discrete time structured population models. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4627-4646. doi: 10.3934/dcds.2013.33.4627

[17]

Xiao-Qiang Zhao, Wendi Wang. Fisher waves in an epidemic model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1117-1128. doi: 10.3934/dcdsb.2004.4.1117

[18]

Jianquan Li, Zhien Ma. Stability analysis for SIS epidemic models with vaccination and constant population size. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 635-642. doi: 10.3934/dcdsb.2004.4.635

[19]

Andreas Widder, Christian Kuehn. Heterogeneous population dynamics and scaling laws near epidemic outbreaks. Mathematical Biosciences & Engineering, 2016, 13 (5) : 1093-1118. doi: 10.3934/mbe.2016032

[20]

Salvatore Rionero. A nonlinear $L^2$-stability analysis for two-species population dynamics with dispersal. Mathematical Biosciences & Engineering, 2006, 3 (1) : 189-204. doi: 10.3934/mbe.2006.3.189

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]