August  2004, 4(3): 813-821. doi: 10.3934/dcdsb.2004.4.813

Testing increasing hazard rate for the progression time of dementia

1. 

Division of Biostatistics, Washington University in St. Louis, St. Louis, MO 63110, United States, United States, United States

2. 

Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, United States

3. 

Department of Neurology and Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, United States

Received  January 2003 Revised  January 2004 Published  May 2004

In the longitudinal studies of certain diseases, subjects are assessed periodically. In fact, many Alzheimer's Disease Research Centers (ADRC) in the United States typically assess their subjects annually, resulting in grouped or interval censored data for the progression time from one stage of dementia to a more severe stage of dementia. This paper studies the likelihood ratio test for increasing hazard rate associated with the progression time of dementia based on grouped progression time data. We first give the maximum likelihood estimators (MLEs) for model parameters under the assumption that the hazard rate of the progression time is nondecreasing. We then present the likelihood ratio test for testing the null hypothesis that the hazard rate is constant against the alternative that it is increasing. Finally, the methodology is applied to the dementia progression time from the Consortium to Establish a Registry for Alzheimer's Disease (CERAD). The statistical methodology developed here, although specifically referred to the study of dementia in the paper, can be easily applied to other longitudinal medical studies in which the disease status is categorized according to the severity and the hazard rate associated with the transition time among disease stages is to be tested.
Citation: C. Xiong, J.P. Miller, F. Gao, Y. Yan, J.C. Morris. Testing increasing hazard rate for the progression time of dementia. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 813-821. doi: 10.3934/dcdsb.2004.4.813
[1]

Jie Huang, Xiaoping Yang, Yunmei Chen. A fast algorithm for global minimization of maximum likelihood based on ultrasound image segmentation. Inverse Problems & Imaging, 2011, 5 (3) : 645-657. doi: 10.3934/ipi.2011.5.645

[2]

R.L. Sheu, M.J. Ting, I.L. Wang. Maximum flow problem in the distribution network. Journal of Industrial & Management Optimization, 2006, 2 (3) : 237-254. doi: 10.3934/jimo.2006.2.237

[3]

Bingzheng Li, Zhengzhan Dai. Error analysis on regularized regression based on the Maximum correntropy criterion. Mathematical Foundations of Computing, 2020, 3 (1) : 25-40. doi: 10.3934/mfc.2020003

[4]

Mikko Kaasalainen. Multimodal inverse problems: Maximum compatibility estimate and shape reconstruction. Inverse Problems & Imaging, 2011, 5 (1) : 37-57. doi: 10.3934/ipi.2011.5.37

[5]

Tianfa Xie, Zhong-Zhan Zhang. Identifiability of models for clinical trials with noncompliance. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 805-811. doi: 10.3934/dcdsb.2004.4.805

[6]

Evans K. Afenya. Using Mathematical Modeling as a Resource in Clinical Trials. Mathematical Biosciences & Engineering, 2005, 2 (3) : 421-436. doi: 10.3934/mbe.2005.2.421

[7]

Johnathan M. Bardsley. A theoretical framework for the regularization of Poisson likelihood estimation problems. Inverse Problems & Imaging, 2010, 4 (1) : 11-17. doi: 10.3934/ipi.2010.4.11

[8]

J. Mead. $ \chi^2 $ test for total variation regularization parameter selection. Inverse Problems & Imaging, 2020, 14 (3) : 401-421. doi: 10.3934/ipi.2020019

[9]

Johnathan M. Bardsley. An efficient computational method for total variation-penalized Poisson likelihood estimation. Inverse Problems & Imaging, 2008, 2 (2) : 167-185. doi: 10.3934/ipi.2008.2.167

[10]

Yuan Wu, Jin Liang. Free boundaries of credit rating migration in switching macro regions. Mathematical Control & Related Fields, 2020, 10 (2) : 257-274. doi: 10.3934/mcrf.2019038

[11]

Kevin Ford. The distribution of totients. Electronic Research Announcements, 1998, 4: 27-34.

[12]

Yishui Wang, Dongmei Zhang, Peng Zhang, Yong Zhang. Local search algorithm for the squared metric $ k $-facility location problem with linear penalties. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2020056

[13]

Andrew Raich. Heat equations and the Weighted $\bar\partial$-problem. Communications on Pure & Applied Analysis, 2012, 11 (3) : 885-909. doi: 10.3934/cpaa.2012.11.885

[14]

Selim Esedoḡlu, Fadil Santosa. Error estimates for a bar code reconstruction method. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1889-1902. doi: 10.3934/dcdsb.2012.17.1889

[15]

Wenxiong Chen, Congming Li. A priori estimate for the Nirenberg problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 225-233. doi: 10.3934/dcdss.2008.1.225

[16]

Shaoyong Lai, Qichang Xie. A selection problem for a constrained linear regression model. Journal of Industrial & Management Optimization, 2008, 4 (4) : 757-766. doi: 10.3934/jimo.2008.4.757

[17]

Adil Bagirov, Sona Taheri, Soodabeh Asadi. A difference of convex optimization algorithm for piecewise linear regression. Journal of Industrial & Management Optimization, 2019, 15 (2) : 909-932. doi: 10.3934/jimo.2018077

[18]

Shuhua Wang, Zhenlong Chen, Baohuai Sheng. Convergence of online pairwise regression learning with quadratic loss. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4023-4054. doi: 10.3934/cpaa.2020178

[19]

John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems & Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333

[20]

H. O. Fattorini. The maximum principle in infinite dimension. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]