
Previous Article
Periodic solutions of a discrete nonautonomous LotkaVolterra predatorprey model with time delays
 DCDSB Home
 This Issue

Next Article
Identifiability of models for clinical trials with noncompliance
Testing increasing hazard rate for the progression time of dementia
1.  Division of Biostatistics, Washington University in St. Louis, St. Louis, MO 63110, United States, United States, United States 
2.  Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, United States 
3.  Department of Neurology and Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, United States 
[1] 
Jie Huang, Xiaoping Yang, Yunmei Chen. A fast algorithm for global minimization of maximum likelihood based on ultrasound image segmentation. Inverse Problems & Imaging, 2011, 5 (3) : 645657. doi: 10.3934/ipi.2011.5.645 
[2] 
Saroja Kumar Singh. Moderate deviation for maximum likelihood estimators from single server queues. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 2. doi: 10.1186/s4154602000044z 
[3] 
R.L. Sheu, M.J. Ting, I.L. Wang. Maximum flow problem in the distribution network. Journal of Industrial & Management Optimization, 2006, 2 (3) : 237254. doi: 10.3934/jimo.2006.2.237 
[4] 
Bingzheng Li, Zhengzhan Dai. Error analysis on regularized regression based on the Maximum correntropy criterion. Mathematical Foundations of Computing, 2020, 3 (1) : 2540. doi: 10.3934/mfc.2020003 
[5] 
Mikko Kaasalainen. Multimodal inverse problems: Maximum compatibility estimate and shape reconstruction. Inverse Problems & Imaging, 2011, 5 (1) : 3757. doi: 10.3934/ipi.2011.5.37 
[6] 
Tianfa Xie, ZhongZhan Zhang. Identifiability of models for clinical trials with noncompliance. Discrete & Continuous Dynamical Systems  B, 2004, 4 (3) : 805811. doi: 10.3934/dcdsb.2004.4.805 
[7] 
Evans K. Afenya. Using Mathematical Modeling as a Resource in Clinical Trials. Mathematical Biosciences & Engineering, 2005, 2 (3) : 421436. doi: 10.3934/mbe.2005.2.421 
[8] 
Ernst Eberlein, Dilip B. Madan. Portfolio theory for squared returns correlated across time. Probability, Uncertainty and Quantitative Risk, 2016, 1 (0) : 1. doi: 10.1186/s4154601600014 
[9] 
J. Mead. $ \chi^2 $ test for total variation regularization parameter selection. Inverse Problems & Imaging, 2020, 14 (3) : 401421. doi: 10.3934/ipi.2020019 
[10] 
Johnathan M. Bardsley. A theoretical framework for the regularization of Poisson likelihood estimation problems. Inverse Problems & Imaging, 2010, 4 (1) : 1117. doi: 10.3934/ipi.2010.4.11 
[11] 
Yuan Wu, Jin Liang. Free boundaries of credit rating migration in switching macro regions. Mathematical Control & Related Fields, 2020, 10 (2) : 257274. doi: 10.3934/mcrf.2019038 
[12] 
Yu A. Kutoyants. On approximation of BSDE and multistep MLEprocesses. Probability, Uncertainty and Quantitative Risk, 2016, 1 (0) : 4. doi: 10.1186/s4154601600050 
[13] 
Kevin Ford. The distribution of totients. Electronic Research Announcements, 1998, 4: 2734. 
[14] 
Andrew Raich. Heat equations and the Weighted $\bar\partial$problem. Communications on Pure & Applied Analysis, 2012, 11 (3) : 885909. doi: 10.3934/cpaa.2012.11.885 
[15] 
Selim Esedoḡlu, Fadil Santosa. Error estimates for a bar code reconstruction method. Discrete & Continuous Dynamical Systems  B, 2012, 17 (6) : 18891902. doi: 10.3934/dcdsb.2012.17.1889 
[16] 
Johnathan M. Bardsley. An efficient computational method for total variationpenalized Poisson likelihood estimation. Inverse Problems & Imaging, 2008, 2 (2) : 167185. doi: 10.3934/ipi.2008.2.167 
[17] 
Wenxiong Chen, Congming Li. A priori estimate for the Nirenberg problem. Discrete & Continuous Dynamical Systems  S, 2008, 1 (2) : 225233. doi: 10.3934/dcdss.2008.1.225 
[18] 
Yuan Wu, Jin Liang, Bei Hu. A free boundary problem for defaultable corporate bond with credit rating migration risk and its asymptotic behavior. Discrete & Continuous Dynamical Systems  B, 2020, 25 (3) : 10431058. doi: 10.3934/dcdsb.2019207 
[19] 
Shuhua Wang, Zhenlong Chen, Baohuai Sheng. Convergence of online pairwise regression learning with quadratic loss. Communications on Pure & Applied Analysis, 2020, 19 (8) : 40234054. doi: 10.3934/cpaa.2020178 
[20] 
Adil Bagirov, Sona Taheri, Soodabeh Asadi. A difference of convex optimization algorithm for piecewise linear regression. Journal of Industrial & Management Optimization, 2019, 15 (2) : 909932. doi: 10.3934/jimo.2018077 
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]