
Previous Article
A simple delayed neural network with large capacity for associative memory
 DCDSB Home
 This Issue

Next Article
Population dynamics of sea bass and young sea bass
Dynamics of a discrete agestructured SIS models
1.  Department of Mathematics, Xi'an Jiaotong University, Xi'an, 710049, China 
2.  Department of Mathematics, University of Napoli, 180126 Napoli, Italy 
[1] 
C. Connell McCluskey. Global stability for an SEI epidemiological model with continuous agestructure in the exposed and infectious classes. Mathematical Biosciences & Engineering, 2012, 9 (4) : 819841. doi: 10.3934/mbe.2012.9.819 
[2] 
Toshikazu Kuniya, Jinliang Wang, Hisashi Inaba. A multigroup SIR epidemic model with age structure. Discrete & Continuous Dynamical Systems  B, 2016, 21 (10) : 35153550. doi: 10.3934/dcdsb.2016109 
[3] 
BinGuo Wang, WanTong Li, Liang Zhang. An almost periodic epidemic model with age structure in a patchy environment. Discrete & Continuous Dynamical Systems  B, 2016, 21 (1) : 291311. doi: 10.3934/dcdsb.2016.21.291 
[4] 
Timothy C. Reluga, Jan Medlock, Alison Galvani. The discounted reproductive number for epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (2) : 377393. doi: 10.3934/mbe.2009.6.377 
[5] 
Geni Gupur, XueZhi Li. Global stability of an agestructured SIRS epidemic model with vaccination. Discrete & Continuous Dynamical Systems  B, 2004, 4 (3) : 643652. doi: 10.3934/dcdsb.2004.4.643 
[6] 
C. Connell McCluskey. Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 381400. doi: 10.3934/mbe.2015008 
[7] 
Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems  B, 2013, 18 (1) : 3756. doi: 10.3934/dcdsb.2013.18.37 
[8] 
John Cleveland. Basic stage structure measure valued evolutionary game model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 291310. doi: 10.3934/mbe.2015.12.291 
[9] 
Jacek Banasiak, Eddy Kimba Phongi, MirosŁaw Lachowicz. A singularly perturbed SIS model with age structure. Mathematical Biosciences & Engineering, 2013, 10 (3) : 499521. doi: 10.3934/mbe.2013.10.499 
[10] 
Sophia R.J. Jang. Discrete hostparasitoid models with Allee effects and age structure in the host. Mathematical Biosciences & Engineering, 2010, 7 (1) : 6781. doi: 10.3934/mbe.2010.7.67 
[11] 
Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability for a class of discrete SIR epidemic models. Mathematical Biosciences & Engineering, 2010, 7 (2) : 347361. doi: 10.3934/mbe.2010.7.347 
[12] 
Ariel CintrónArias, Carlos CastilloChávez, Luís M. A. Bettencourt, Alun L. Lloyd, H. T. Banks. The estimation of the effective reproductive number from disease outbreak data. Mathematical Biosciences & Engineering, 2009, 6 (2) : 261282. doi: 10.3934/mbe.2009.6.261 
[13] 
Tianhui Yang, Ammar Qarariyah, Qigui Yang. The effect of spatial variables on the basic reproduction ratio for a reactiondiffusion epidemic model. Discrete & Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021170 
[14] 
Mamadou L. Diagne, Ousmane Seydi, Aissata A. B. Sy. A twogroup age of infection epidemic model with periodic behavioral changes. Discrete & Continuous Dynamical Systems  B, 2020, 25 (6) : 20572092. doi: 10.3934/dcdsb.2019202 
[15] 
YanXia Dang, ZhiPeng Qiu, XueZhi Li, Maia Martcheva. Global dynamics of a vectorhost epidemic model with age of infection. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 11591186. doi: 10.3934/mbe.2017060 
[16] 
Hao Kang, Qimin Huang, Shigui Ruan. Periodic solutions of an agestructured epidemic model with periodic infection rate. Communications on Pure & Applied Analysis, 2020, 19 (10) : 49554972. doi: 10.3934/cpaa.2020220 
[17] 
Hisashi Inaba. Mathematical analysis of an agestructured SIR epidemic model with vertical transmission. Discrete & Continuous Dynamical Systems  B, 2006, 6 (1) : 6996. doi: 10.3934/dcdsb.2006.6.69 
[18] 
Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula. Mathematical analysis of an age structured heroincocaine epidemic model. Discrete & Continuous Dynamical Systems  B, 2020, 25 (11) : 44494477. doi: 10.3934/dcdsb.2020107 
[19] 
Suxia Zhang, Xiaxia Xu. A mathematical model for hepatitis B with infectionage structure. Discrete & Continuous Dynamical Systems  B, 2016, 21 (4) : 13291346. doi: 10.3934/dcdsb.2016.21.1329 
[20] 
Yueding Yuan, Zhiming Guo, Moxun Tang. A nonlocal diffusion population model with age structure and Dirichlet boundary condition. Communications on Pure & Applied Analysis, 2015, 14 (5) : 20952115. doi: 10.3934/cpaa.2015.14.2095 
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]