• Previous Article
    A criterion for non-persistence of travelling breathers for perturbations of the Ablowitz--Ladik lattice
  • DCDS-B Home
  • This Issue
  • Next Article
    A global variational structure and propagation of disturbances in reaction-diffusion systems of gradient type
November  2004, 4(4): 893-910. doi: 10.3934/dcdsb.2004.4.893

A reaction-diffusion system modeling direct and indirect transmission of diseases

1. 

Department of Mathematics, University of Houston, Houston, Texas, 77204-3476, United States

2. 

UMR CNRS 5466, Mathématiques Appliquées de Bordeaux, case 26, Université Victor Segalen Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France

3. 

Department of Mathematics, University of Houston, Houston, Texas 77204, United States

Received  December 2002 Revised  June 2004 Published  August 2004

We study the global existence and approximation of the solutions to a reaction diffusion system coupled with an ordinary differential equation modeling direct transmission between individuals and indirect transmission via a contaminated environment of an epidemic disease.
Citation: W. E. Fitzgibbon, M. Langlais, J.J. Morgan. A reaction-diffusion system modeling direct and indirect transmission of diseases. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 893-910. doi: 10.3934/dcdsb.2004.4.893
[1]

Angelo Favini, Atsushi Yagi. Global existence for Laplace reaction-diffusion equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1473-1493. doi: 10.3934/dcdss.2020083

[2]

Aníbal Rodríguez-Bernal, Alejandro Vidal-López. A note on the existence of global solutions for reaction-diffusion equations with almost-monotonic nonlinearities. Communications on Pure and Applied Analysis, 2014, 13 (2) : 635-644. doi: 10.3934/cpaa.2014.13.635

[3]

Georg Hetzer. Global existence for a functional reaction-diffusion problem from climate modeling. Conference Publications, 2011, 2011 (Special) : 660-671. doi: 10.3934/proc.2011.2011.660

[4]

Congming Li, Eric S. Wright. Global existence of solutions to a reaction diffusion system based upon carbonate reaction kinetics. Communications on Pure and Applied Analysis, 2002, 1 (1) : 77-84. doi: 10.3934/cpaa.2002.1.77

[5]

Lili Du, Chunlai Mu, Zhaoyin Xiang. Global existence and blow-up to a reaction-diffusion system with nonlinear memory. Communications on Pure and Applied Analysis, 2005, 4 (4) : 721-733. doi: 10.3934/cpaa.2005.4.721

[6]

Shu-Xiang Huang, Fu-Cai Li, Chun-Hong Xie. Global existence and blow-up of solutions to a nonlocal reaction-diffusion system. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1519-1532. doi: 10.3934/dcds.2003.9.1519

[7]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[8]

Alexey Cheskidov, Songsong Lu. The existence and the structure of uniform global attractors for nonautonomous Reaction-Diffusion systems without uniqueness. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 55-66. doi: 10.3934/dcdss.2009.2.55

[9]

Sebastian Aniţa, William Edward Fitzgibbon, Michel Langlais. Global existence and internal stabilization for a reaction-diffusion system posed on non coincident spatial domains. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 805-822. doi: 10.3934/dcdsb.2009.11.805

[10]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure and Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001

[11]

Vandana Sharma, Jyotshana V. Prajapat. Global existence of solutions to reaction diffusion systems with mass transport type boundary conditions on an evolving domain. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 109-135. doi: 10.3934/dcds.2021109

[12]

José A. Langa, James C. Robinson, Aníbal Rodríguez-Bernal, A. Suárez, A. Vidal-López. Existence and nonexistence of unbounded forwards attractor for a class of non-autonomous reaction diffusion equations. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 483-497. doi: 10.3934/dcds.2007.18.483

[13]

Yong Jung Kim, Wei-Ming Ni, Masaharu Taniguchi. Non-existence of localized travelling waves with non-zero speed in single reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3707-3718. doi: 10.3934/dcds.2013.33.3707

[14]

Shi-Liang Wu, Tong-Chang Niu, Cheng-Hsiung Hsu. Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3467-3486. doi: 10.3934/dcds.2017147

[15]

Tarik Mohammed Touaoula. Global dynamics for a class of reaction-diffusion equations with distributed delay and neumann condition. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2473-2490. doi: 10.3934/cpaa.2020108

[16]

Laiqing Meng, Jia Yuan, Xiaoxin Zheng. Global existence of almost energy solution to the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3413-3441. doi: 10.3934/dcds.2019141

[17]

Olaf Hansen. A global existence theorem for two coupled semilinear diffusion equations from climate modeling. Discrete and Continuous Dynamical Systems, 1997, 3 (4) : 541-564. doi: 10.3934/dcds.1997.3.541

[18]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1301-1322. doi: 10.3934/dcdsb.2021091

[19]

Xiaoyu Chen, Jijie Zhao, Qian Zhang. Global existence of weak solutions for the 3D axisymmetric chemotaxis-Navier-Stokes equations with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022062

[20]

Yuan Lou, Wei-Ming Ni, Yaping Wu. On the global existence of a cross-diffusion system. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 193-203. doi: 10.3934/dcds.1998.4.193

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (396)
  • HTML views (0)
  • Cited by (20)

Other articles
by authors

[Back to Top]