November  2004, 4(4): 911-920. doi: 10.3934/dcdsb.2004.4.911

A criterion for non-persistence of travelling breathers for perturbations of the Ablowitz--Ladik lattice

1. 

Institute of Mechanics, Vienna University of Technology, A-1040 Vienna, Austria

2. 

Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom

3. 

Department of Mathematics and Computer Science, University of Leicester, Leicester, LE1 7RH

Received  February 2003 Revised  December 2003 Published  August 2004

The Ablowitz-Ladik lattice has a two-parameter family of travelling breathers. We derive a necessary condition for their persistence under perturbations of the system. From this we deduce non-persistence for a variety of examples of perturbations. In particular, we show that travelling breathers do not persist under many reversible perturbations unless an additional symmetry is preserved, and we address the case of Hamiltonian perturbations.
Citation: A. Berger, R.S. MacKay, Vassilis Rothos. A criterion for non-persistence of travelling breathers for perturbations of the Ablowitz--Ladik lattice. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 911-920. doi: 10.3934/dcdsb.2004.4.911
[1]

Rehana Naz, Fazal M. Mahomed. Characterization of partial Hamiltonian operators and related first integrals. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 723-734. doi: 10.3934/dcdss.2018045

[2]

Rehana Naz, Fazal M Mahomed, Azam Chaudhry. First integrals of Hamiltonian systems: The inverse problem. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2829-2840. doi: 10.3934/dcdss.2020121

[3]

Ahmed Y. Abdallah. Attractors for first order lattice systems with almost periodic nonlinear part. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1241-1255. doi: 10.3934/dcdsb.2019218

[4]

Olusola Kolebaje, Ebenezer Bonyah, Lateef Mustapha. The first integral method for two fractional non-linear biological models. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 487-502. doi: 10.3934/dcdss.2019032

[5]

Richard A. Norton, G. R. W. Quispel. Discrete gradient methods for preserving a first integral of an ordinary differential equation. Discrete & Continuous Dynamical Systems, 2014, 34 (3) : 1147-1170. doi: 10.3934/dcds.2014.34.1147

[6]

Noui Djaidja, Mostefa Nadir. Comparison between Taylor and perturbed method for Volterra integral equation of the first kind. Numerical Algebra, Control & Optimization, 2021, 11 (4) : 487-493. doi: 10.3934/naco.2020039

[7]

Carl-Friedrich Kreiner, Johannes Zimmer. Heteroclinic travelling waves for the lattice sine-Gordon equation with linear pair interaction. Discrete & Continuous Dynamical Systems, 2009, 25 (3) : 915-931. doi: 10.3934/dcds.2009.25.915

[8]

Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3163-3209. doi: 10.3934/dcds.2020402

[9]

Zhaoquan Xu, Jiying Ma. Monotonicity, asymptotics and uniqueness of travelling wave solution of a non-local delayed lattice dynamical system. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 5107-5131. doi: 10.3934/dcds.2015.35.5107

[10]

Xiangjin Xu. Sub-harmonics of first order Hamiltonian systems and their asymptotic behaviors. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 643-654. doi: 10.3934/dcdsb.2003.3.643

[11]

Juntao Sun, Jifeng Chu, Zhaosheng Feng. Homoclinic orbits for first order periodic Hamiltonian systems with spectrum point zero. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3807-3824. doi: 10.3934/dcds.2013.33.3807

[12]

Cyril Joel Batkam. Homoclinic orbits of first-order superquadratic Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2014, 34 (9) : 3353-3369. doi: 10.3934/dcds.2014.34.3353

[13]

Chungen Liu, Xiaofei Zhang. Subharmonic solutions and minimal periodic solutions of first-order Hamiltonian systems with anisotropic growth. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1559-1574. doi: 10.3934/dcds.2017064

[14]

Nathanael Skrepek. Well-posedness of linear first order port-Hamiltonian Systems on multidimensional spatial domains. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020098

[15]

Yu Guo, Xiao-Bao Shu, Qianbao Yin. Existence of solutions for first-order Hamiltonian random impulsive differential equations with Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021236

[16]

Francesco Piazza, Yves-Henri Sanejouand. Breather-mediated energy transfer in proteins. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1247-1266. doi: 10.3934/dcdss.2011.4.1247

[17]

Guillaume James, Dmitry Pelinovsky. Breather continuation from infinity in nonlinear oscillator chains. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1775-1799. doi: 10.3934/dcds.2012.32.1775

[18]

Azucena Álvarez, Francisco R. Romero, José M. Romero, Juan F. R. Archilla. Nonsymmetric moving breather collisions in the Peyrard-Bishop DNA model. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 995-1006. doi: 10.3934/dcdss.2011.4.995

[19]

Dmitry Treschev. Travelling waves in FPU lattices. Discrete & Continuous Dynamical Systems, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867

[20]

J. Cuevas, J. C. Eilbeck, N. I. Karachalios. Thresholds for breather solutions of the discrete nonlinear Schrödinger equation with saturable and power nonlinearity. Discrete & Continuous Dynamical Systems, 2008, 21 (2) : 445-475. doi: 10.3934/dcds.2008.21.445

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]