November  2005, 5(4): 1027-1042. doi: 10.3934/dcdsb.2005.5.1027

Kinks in stripe forming systems under traveling wave forcing

1. 

Hahn-Meitner Institut, Glienicker Str. 100, 14109 Berlin, Germany

2. 

Facultat de Física, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona, Spain

3. 

Physikalisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany

Received  October 2004 Revised  April 2005 Published  August 2005

We study domain walls in stripe forming systems that are externally forced by a periodic pattern, which is close to spatial resonance of 2:1 (the period of the forcing being half of the internal wavelength) and moving relative to the internal pattern. Two transitions are identified: A transition where the pattern lags behind the forcing as the forcing becomes too fast and a spontaneous symmetry-breaking transition of walls (kinks). The departure from perfect resonance is found to render the kink bifurcation imperfect and causes the walls to drift. We study the velocity of the kinks, which behaves strongly nonlinear close to the transitions. A phase approximation is used to understand the behavior and is found to be valid in a large range of parameters. Results from the phase equation can be generalized to hold for different ratios n:1.
Citation: S. Rüdiger, J. Casademunt, L. Kramer. Kinks in stripe forming systems under traveling wave forcing. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 1027-1042. doi: 10.3934/dcdsb.2005.5.1027
[1]

Emile Franc Doungmo Goufo, Melusi Khumalo, Patrick M. Tchepmo Djomegni. Perturbations of Hindmarsh-Rose neuron dynamics by fractional operators: Bifurcation, firing and chaotic bursts. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 663-682. doi: 10.3934/dcdss.2020036

[2]

Vieri Benci, Donato Fortunato. Hylomorphic solitons on lattices. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 875-897. doi: 10.3934/dcds.2010.28.875

[3]

Adrian Constantin. Solitons from the Lagrangian perspective. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 469-481. doi: 10.3934/dcds.2007.19.469

[4]

Vieri Benci. Solitons and Bohmian mechanics. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 303-317. doi: 10.3934/dcds.2002.8.303

[5]

Isabel Mercader, Oriol Batiste, Arantxa Alonso, Edgar Knobloch. Dissipative solitons in binary fluid convection. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1213-1225. doi: 10.3934/dcdss.2011.4.1213

[6]

Giulio Colombo, Luciano Mari, Marco Rigoli. Remarks on mean curvature flow solitons in warped products. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 1957-1991. doi: 10.3934/dcdss.2020153

[7]

S. Raynor, G. Staffilani. Low regularity stability of solitons for the KDV equation. Communications on Pure and Applied Analysis, 2003, 2 (3) : 277-296. doi: 10.3934/cpaa.2003.2.277

[8]

Yvan Martel, Frank Merle. Inelastic interaction of nearly equal solitons for the BBM equation. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 487-532. doi: 10.3934/dcds.2010.27.487

[9]

Yvan Martel, Frank Merle. Refined asymptotics around solitons for gKdV equations. Discrete and Continuous Dynamical Systems, 2008, 20 (2) : 177-218. doi: 10.3934/dcds.2008.20.177

[10]

David M. A. Stuart. Solitons on pseudo-Riemannian manifolds: stability and motion. Electronic Research Announcements, 2000, 6: 75-89.

[11]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[12]

V. S. Gerdjikov, A. V. Kyuldjiev, M. D. Todorov. Manakov solitons and effects of external potential wells. Conference Publications, 2015, 2015 (special) : 505-514. doi: 10.3934/proc.2015.0505

[13]

Pak Tung Ho, Rong Tang. Fractional Yamabe solitons and fractional Nirenberg problem. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3215-3234. doi: 10.3934/cpaa.2021103

[14]

Christian Lax, Sebastian Walcher. Singular perturbations and scaling. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 1-29. doi: 10.3934/dcdsb.2019170

[15]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš. Perturbations of nonlinear eigenvalue problems. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1403-1431. doi: 10.3934/cpaa.2019068

[16]

Said Hadd, Rosanna Manzo, Abdelaziz Rhandi. Unbounded perturbations of the generator domain. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 703-723. doi: 10.3934/dcds.2015.35.703

[17]

Michel Duprez, Guillaume Olive. Compact perturbations of controlled systems. Mathematical Control and Related Fields, 2018, 8 (2) : 397-410. doi: 10.3934/mcrf.2018016

[18]

Mohamed Sami ElBialy. Locally Lipschitz perturbations of bisemigroups. Communications on Pure and Applied Analysis, 2010, 9 (2) : 327-349. doi: 10.3934/cpaa.2010.9.327

[19]

Alfonso Artigue. Lipschitz perturbations of expansive systems. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1829-1841. doi: 10.3934/dcds.2015.35.1829

[20]

Patrick M. Fitzpatrick, Jacobo Pejsachowicz. Branching and bifurcation. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1955-1975. doi: 10.3934/dcdss.2019127

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (85)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]