August  2005, 5(3): 529-542. doi: 10.3934/dcdsb.2005.5.529

Universality of dishonesty of substochastic semigroups: Shattering fragmentation and explosive birth-and-death processes

1. 

School of Mathematical Sciences, University of KwaZulu-Natal, Durban 4041

2. 

Laboratoire de Mathématiques, Université de Franche-Comté, Route de Gray, 25030 Besançon Cedex, France

Received  April 2004 Revised  June 2004 Published  May 2005

By a dishonest process we understand a process in which, for some initial data, there occurs an unaccounted for loss of the described quan- tity throughout the evolution. Classical examples are offered by shattering fragmentation, where the total mass is decreasing faster than predicted by the formal conservation laws, or explosive birth-and-death processes which, being formally conservative, suffer from the loss of individuals in the course of evo- lution. In this note we shall show, for these two processes, that if dishonesty occurs for one initial datum, then it must occur for any of them.
Citation: Jacek Banasiak, Mustapha Mokhtar-Kharroubi. Universality of dishonesty of substochastic semigroups: Shattering fragmentation and explosive birth-and-death processes. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 529-542. doi: 10.3934/dcdsb.2005.5.529
[1]

Jacek Banasiak, Marcin Moszyński. Dynamics of birth-and-death processes with proliferation - stability and chaos. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 67-79. doi: 10.3934/dcds.2011.29.67

[2]

Hilla Behar, Alexandra Agranovich, Yoram Louzoun. Diffusion rate determines balance between extinction and proliferation in birth-death processes. Mathematical Biosciences & Engineering, 2013, 10 (3) : 523-550. doi: 10.3934/mbe.2013.10.523

[3]

Jacek Banasiak. Transport processes with coagulation and strong fragmentation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 445-472. doi: 10.3934/dcdsb.2012.17.445

[4]

Jacek Banasiak, Wilson Lamb. Coagulation, fragmentation and growth processes in a size structured population. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 563-585. doi: 10.3934/dcdsb.2009.11.563

[5]

Jacek Banasiak, Wilson Lamb. The discrete fragmentation equation: Semigroups, compactness and asynchronous exponential growth. Kinetic & Related Models, 2012, 5 (2) : 223-236. doi: 10.3934/krm.2012.5.223

[6]

Wilson Lamb, Adam McBride, Louise Smith. Coagulation and fragmentation processes with evolving size and shape profiles: A semigroup approach. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5177-5187. doi: 10.3934/dcds.2013.33.5177

[7]

Sung-Seok Ko. A nonhomogeneous quasi-birth-death process approach for an $ (s, S) $ policy for a perishable inventory system with retrial demands. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2019009

[8]

Andrew Yates, Robin Callard. Cell death and the maintenance of immunological memory. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 43-59. doi: 10.3934/dcdsb.2001.1.43

[9]

Freddy Dumortier, Robert Roussarie. Birth of canard cycles. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 723-781. doi: 10.3934/dcdss.2009.2.723

[10]

Marie Doumic, Miguel Escobedo. Time asymptotics for a critical case in fragmentation and growth-fragmentation equations. Kinetic & Related Models, 2016, 9 (2) : 251-297. doi: 10.3934/krm.2016.9.251

[11]

Ankik Kumar Giri. On the uniqueness for coagulation and multiple fragmentation equation. Kinetic & Related Models, 2013, 6 (3) : 589-599. doi: 10.3934/krm.2013.6.589

[12]

Fritz Colonius, Marco Spadini. Fundamental semigroups for dynamical systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 447-463. doi: 10.3934/dcds.2006.14.447

[13]

José A. Conejero, Alfredo Peris. Chaotic translation semigroups. Conference Publications, 2007, 2007 (Special) : 269-276. doi: 10.3934/proc.2007.2007.269

[14]

Min He. On continuity in parameters of integrated semigroups. Conference Publications, 2003, 2003 (Special) : 403-412. doi: 10.3934/proc.2003.2003.403

[15]

Alastair Fletcher. Quasiregular semigroups with examples. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2157-2172. doi: 10.3934/dcds.2019090

[16]

Weronika Biedrzycka, Marta Tyran-Kamińska. Self-similar solutions of fragmentation equations revisited. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 13-27. doi: 10.3934/dcdsb.2018002

[17]

Mohammad El Smaily, François Hamel, Lionel Roques. Homogenization and influence of fragmentation in a biological invasion model. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 321-342. doi: 10.3934/dcds.2009.25.321

[18]

John R. Graef, Michael Y. Li, Liancheng Wang. A study on the effects of disease caused death in a simple epidemic model. Conference Publications, 1998, 1998 (Special) : 288-300. doi: 10.3934/proc.1998.1998.288

[19]

Christian Winkel, Simon Neumann, Christina Surulescu, Peter Scheurich. A minimal mathematical model for the initial molecular interactions of death receptor signalling. Mathematical Biosciences & Engineering, 2012, 9 (3) : 663-683. doi: 10.3934/mbe.2012.9.663

[20]

Ming He, Xiaoyun Ma, Weijiang Zhang. Oscillation death in systems of oscillators with transferable coupling and time-delay. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 737-745. doi: 10.3934/dcds.2001.7.737

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]