
Previous Article
Multiresolution analysis for 2D turbulence. Part 1: Wavelets vs cosine packets, a comparative study
 DCDSB Home
 This Issue

Next Article
Traffic circles and timing of traffic lights for cars flow
Multiscale numerical method for nonlinear Maxwell equations
1.  Mathématiques Appliquées de Bordeaux, Université Bordeaux 1 et CNRS UMR 5466, 351 cours de la Libération, 33405 Talence cedex, France, France 
[1] 
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasireversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 11071133. doi: 10.3934/ipi.2020056 
[2] 
Youshan Tao, Michael Winkler. Critical mass for infinitetime blowup in a haptotaxis system with nonlinear zeroorder interaction. Discrete & Continuous Dynamical Systems  A, 2021, 41 (1) : 439454. doi: 10.3934/dcds.2020216 
[3] 
Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems  A, 2021, 41 (1) : 455469. doi: 10.3934/dcds.2020380 
[4] 
Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems  A, 2021, 41 (1) : 2960. doi: 10.3934/dcds.2020297 
[5] 
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : . doi: 10.3934/cpaa.2020272 
[6] 
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020450 
[7] 
Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020456 
[8] 
Pengyu Chen. Nonautonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems  A, 2020 doi: 10.3934/dcds.2020383 
[9] 
PierreEtienne Druet. A theory of generalised solutions for ideal gas mixtures with MaxwellStefan diffusion. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020458 
[10] 
Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 15731624. doi: 10.3934/era.2020115 
[11] 
Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reactiondiffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020321 
[12] 
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 15031528. doi: 10.3934/era.2020079 
[13] 
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Kleingordon equation. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020448 
[14] 
Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020 doi: 10.3934/fods.2020018 
[15] 
Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020462 
[16] 
Hua Qiu, ZhengAn Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 13751393. doi: 10.3934/era.2020073 
[17] 
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems  A, 2021, 41 (1) : 471487. doi: 10.3934/dcds.2020264 
[18] 
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : . doi: 10.3934/krm.2020050 
[19] 
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 54375473. doi: 10.3934/cpaa.2020247 
[20] 
José Luis López. A quantum approach to KellerSegel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems  A, 2020 doi: 10.3934/dcds.2020376 
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]