
Previous Article
Multiresolution analysis for 2D turbulence. Part 1: Wavelets vs cosine packets, a comparative study
 DCDSB Home
 This Issue

Next Article
Traffic circles and timing of traffic lights for cars flow
Multiscale numerical method for nonlinear Maxwell equations
1.  Mathématiques Appliquées de Bordeaux, Université Bordeaux 1 et CNRS UMR 5466, 351 cours de la Libération, 33405 Talence cedex, France, France 
[1] 
W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure and Applied Analysis, 2005, 4 (2) : 431444. doi: 10.3934/cpaa.2005.4.431 
[2] 
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete and Continuous Dynamical Systems  B, 2021, 26 (5) : 24292440. doi: 10.3934/dcdsb.2020185 
[3] 
Gang Bao. Mathematical modeling of nonlinear diffracvtive optics. Conference Publications, 1998, 1998 (Special) : 8999. doi: 10.3934/proc.1998.1998.89 
[4] 
Björn Birnir, Niklas Wellander. Homogenized Maxwell's equations; A model for ceramic varistors. Discrete and Continuous Dynamical Systems  B, 2006, 6 (2) : 257272. doi: 10.3934/dcdsb.2006.6.257 
[5] 
Daomin Cao, Ezzat S. Noussair, Shusen Yan. On the profile of solutions for an elliptic problem arising in nonlinear optics. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 649666. doi: 10.3934/dcds.2004.11.649 
[6] 
Gang Bao, Bin Hu, Peijun Li, Jue Wang. Analysis of timedomain Maxwell's equations in biperiodic structures. Discrete and Continuous Dynamical Systems  B, 2020, 25 (1) : 259286. doi: 10.3934/dcdsb.2019181 
[7] 
M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete and Continuous Dynamical Systems  S, 2009, 2 (3) : 473481. doi: 10.3934/dcdss.2009.2.473 
[8] 
Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems and Imaging, 2014, 8 (4) : 11171137. doi: 10.3934/ipi.2014.8.1117 
[9] 
Hao Wang, Wei Yang, Yunqing Huang. An adaptive edge finite element method for the Maxwell's equations in metamaterials. Electronic Research Archive, 2020, 28 (2) : 961976. doi: 10.3934/era.2020051 
[10] 
B. L. G. Jonsson. Wave splitting of Maxwell's equations with anisotropic heterogeneous constitutive relations. Inverse Problems and Imaging, 2009, 3 (3) : 405452. doi: 10.3934/ipi.2009.3.405 
[11] 
Cleverson R. da Luz, Gustavo Alberto Perla Menzala. Uniform stabilization of anisotropic Maxwell's equations with boundary dissipation. Discrete and Continuous Dynamical Systems  S, 2009, 2 (3) : 547558. doi: 10.3934/dcdss.2009.2.547 
[12] 
Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems and Imaging, 2007, 1 (1) : 159179. doi: 10.3934/ipi.2007.1.159 
[13] 
Dirk Pauly. On Maxwell's and Poincaré's constants. Discrete and Continuous Dynamical Systems  S, 2015, 8 (3) : 607618. doi: 10.3934/dcdss.2015.8.607 
[14] 
Kim Dang Phung. Energy decay for Maxwell's equations with Ohm's law in partially cubic domains. Communications on Pure and Applied Analysis, 2013, 12 (5) : 22292266. doi: 10.3934/cpaa.2013.12.2229 
[15] 
Cheng Hou Tsang, Boris A. Malomed, Kwok Wing Chow. Exact solutions for periodic and solitary matter waves in nonlinear lattices. Discrete and Continuous Dynamical Systems  S, 2011, 4 (5) : 12991325. doi: 10.3934/dcdss.2011.4.1299 
[16] 
Tian Ma, Shouhong Wang. Gravitational Field Equations and Theory of Dark Matter and Dark Energy. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 335366. doi: 10.3934/dcds.2014.34.335 
[17] 
J. J. Morgan, HongMing Yin. On Maxwell's system with a thermal effect. Discrete and Continuous Dynamical Systems  B, 2001, 1 (4) : 485494. doi: 10.3934/dcdsb.2001.1.485 
[18] 
Remi Sentis. Models and simulations for the laserplasma interaction and the threewave coupling problem. Discrete and Continuous Dynamical Systems  S, 2012, 5 (2) : 329343. doi: 10.3934/dcdss.2012.5.329 
[19] 
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasireversibility method of a data completion problem for Maxwell's equations. Inverse Problems and Imaging, 2020, 14 (6) : 11071133. doi: 10.3934/ipi.2020056 
[20] 
S. S. Krigman. Exact boundary controllability of Maxwell's equations with weak conductivity in the heterogeneous medium inside a general domain. Conference Publications, 2007, 2007 (Special) : 590601. doi: 10.3934/proc.2007.2007.590 
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]