
Previous Article
Dynamics close to a non semisimple 1:1 resonant periodic orbit
 DCDSB Home
 This Issue

Next Article
Discrete MayLeonard competition models II
Normal mode analysis of secondorder projection methods for incompressible flows
1.  Department of Mathematics, Purdue University, West Lafayette , IN 47907, United States, United States 
[1] 
Angelamaria Cardone, Dajana Conte, Beatrice Paternoster. Twostep collocation methods for fractional differential equations. Discrete & Continuous Dynamical Systems  B, 2018, 23 (7) : 27092725. doi: 10.3934/dcdsb.2018088 
[2] 
Wenxiong Chen, Shijie Qi. Direct methods on fractional equations. Discrete & Continuous Dynamical Systems  A, 2019, 39 (3) : 12691310. doi: 10.3934/dcds.2019055 
[3] 
Philippe Angot, Pierre Fabrie. Convergence results for the vector penaltyprojection and twostep artificial compressibility methods. Discrete & Continuous Dynamical Systems  B, 2012, 17 (5) : 13831405. doi: 10.3934/dcdsb.2012.17.1383 
[4] 
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multistep spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377387. doi: 10.3934/naco.2018024 
[5] 
Joseph A. Connolly, Neville J. Ford. Comparison of numerical methods for fractional differential equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 289307. doi: 10.3934/cpaa.2006.5.289 
[6] 
Yin Yang, Yunqing Huang. Spectral JacobiGalerkin methods and iterated methods for Fredholm integral equations of the second kind with weakly singular kernel. Discrete & Continuous Dynamical Systems  S, 2019, 12 (3) : 685702. doi: 10.3934/dcdss.2019043 
[7] 
Richard A. Norton, David I. McLaren, G. R. W. Quispel, Ari Stern, Antonella Zanna. Projection methods and discrete gradient methods for preserving first integrals of ODEs. Discrete & Continuous Dynamical Systems  A, 2015, 35 (5) : 20792098. doi: 10.3934/dcds.2015.35.2079 
[8] 
Andrew J. Steyer, Erik S. Van Vleck. Underlying onestep methods and nonautonomous stability of general linear methods. Discrete & Continuous Dynamical Systems  B, 2018, 23 (7) : 28592877. doi: 10.3934/dcdsb.2018108 
[9] 
Thomas Schuster, Joachim Weickert. On the application of projection methods for computing optical flow fields. Inverse Problems & Imaging, 2007, 1 (4) : 673690. doi: 10.3934/ipi.2007.1.673 
[10] 
Dang Van Hieu. Projection methods for solving split equilibrium problems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 119. doi: 10.3934/jimo.2019056 
[11] 
A. Pedas, G. Vainikko. Smoothing transformation and piecewise polynomial projection methods for weakly singular Fredholm integral equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 395413. doi: 10.3934/cpaa.2006.5.395 
[12] 
Julian Koellermeier, Roman Pascal Schaerer, Manuel Torrilhon. A framework for hyperbolic approximation of kinetic equations using quadraturebased projection methods. Kinetic & Related Models, 2014, 7 (3) : 531549. doi: 10.3934/krm.2014.7.531 
[13] 
Sanjay Khattri. Another note on some quadrature based threestep iterative methods for nonlinear equations. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 549555. doi: 10.3934/naco.2013.3.549 
[14] 
Yuhong Dai, Yaxiang Yuan. Analysis of monotone gradient methods. Journal of Industrial & Management Optimization, 2005, 1 (2) : 181192. doi: 10.3934/jimo.2005.1.181 
[15] 
Hong Wang, Aijie Cheng, Kaixin Wang. Fast finite volume methods for spacefractional diffusion equations. Discrete & Continuous Dynamical Systems  B, 2015, 20 (5) : 14271441. doi: 10.3934/dcdsb.2015.20.1427 
[16] 
Yoonsang Lee, Bjorn Engquist. Variable step size multiscale methods for stiff and highly oscillatory dynamical systems. Discrete & Continuous Dynamical Systems  A, 2014, 34 (3) : 10791097. doi: 10.3934/dcds.2014.34.1079 
[17] 
Tingting Wu, Yufei Yang, Huichao Jing. Twostep methods for image zooming using duality strategies. Numerical Algebra, Control & Optimization, 2014, 4 (3) : 209225. doi: 10.3934/naco.2014.4.209 
[18] 
Suna Ma, Huiyuan Li, Zhimin Zhang. Novel spectral methods for Schrödinger equations with an inverse square potential on the whole space. Discrete & Continuous Dynamical Systems  B, 2019, 24 (4) : 15891615. doi: 10.3934/dcdsb.2018221 
[19] 
B. S. Goh, W. J. Leong, Z. Siri. Partial Newton methods for a system of equations. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 463469. doi: 10.3934/naco.2013.3.463 
[20] 
Gaohang Yu, Shanzhou Niu, Jianhua Ma. Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints. Journal of Industrial & Management Optimization, 2013, 9 (1) : 117129. doi: 10.3934/jimo.2013.9.117 
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]