August  2005, 5(3): 817-840. doi: 10.3934/dcdsb.2005.5.817

Normal mode analysis of second-order projection methods for incompressible flows

1. 

Department of Mathematics, Purdue University, West Lafayette , IN 47907, United States, United States

Received  September 2004 Revised  January 2005 Published  May 2005

A rigorous normal mode error analysis is carried out for two second-order projection type methods. It is shown that although the two schemes provide second-order accuracy for the velocity in $\L^2$-norm, their accuracies for the velocity in $\H^1$-norm and for the pressure in $L^2$-norm are different, and only the consistent splitting scheme introduced in [6] provides full second-order accuracy for all variable in their natural norms. The advantages and disadvantages of the normal mode analysis vs. the energy method are also elaborated.
Citation: Jae-Hong Pyo, Jie Shen. Normal mode analysis of second-order projection methods for incompressible flows. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 817-840. doi: 10.3934/dcdsb.2005.5.817
[1]

Angelamaria Cardone, Dajana Conte, Beatrice Paternoster. Two-step collocation methods for fractional differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2709-2725. doi: 10.3934/dcdsb.2018088

[2]

Wenxiong Chen, Shijie Qi. Direct methods on fractional equations. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1269-1310. doi: 10.3934/dcds.2019055

[3]

Philippe Angot, Pierre Fabrie. Convergence results for the vector penalty-projection and two-step artificial compressibility methods. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1383-1405. doi: 10.3934/dcdsb.2012.17.1383

[4]

Hong Lu, Ji Li, Mingji Zhang. Spectral methods for two-dimensional space and time fractional Bloch-Torrey equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3357-3371. doi: 10.3934/dcdsb.2020065

[5]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control and Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[6]

Joseph A. Connolly, Neville J. Ford. Comparison of numerical methods for fractional differential equations. Communications on Pure and Applied Analysis, 2006, 5 (2) : 289-307. doi: 10.3934/cpaa.2006.5.289

[7]

Andrew J. Steyer, Erik S. Van Vleck. Underlying one-step methods and nonautonomous stability of general linear methods. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2859-2877. doi: 10.3934/dcdsb.2018108

[8]

Yin Yang, Yunqing Huang. Spectral Jacobi-Galerkin methods and iterated methods for Fredholm integral equations of the second kind with weakly singular kernel. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 685-702. doi: 10.3934/dcdss.2019043

[9]

Richard A. Norton, David I. McLaren, G. R. W. Quispel, Ari Stern, Antonella Zanna. Projection methods and discrete gradient methods for preserving first integrals of ODEs. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2079-2098. doi: 10.3934/dcds.2015.35.2079

[10]

Thomas Schuster, Joachim Weickert. On the application of projection methods for computing optical flow fields. Inverse Problems and Imaging, 2007, 1 (4) : 673-690. doi: 10.3934/ipi.2007.1.673

[11]

Dang Van Hieu. Projection methods for solving split equilibrium problems. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2331-2349. doi: 10.3934/jimo.2019056

[12]

Sanjay Khattri. Another note on some quadrature based three-step iterative methods for non-linear equations. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 549-555. doi: 10.3934/naco.2013.3.549

[13]

Quan Zhou, Yabing Sun. High order one-step methods for backward stochastic differential equations via Itô-Taylor expansion. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021233

[14]

A. Pedas, G. Vainikko. Smoothing transformation and piecewise polynomial projection methods for weakly singular Fredholm integral equations. Communications on Pure and Applied Analysis, 2006, 5 (2) : 395-413. doi: 10.3934/cpaa.2006.5.395

[15]

Julian Koellermeier, Roman Pascal Schaerer, Manuel Torrilhon. A framework for hyperbolic approximation of kinetic equations using quadrature-based projection methods. Kinetic and Related Models, 2014, 7 (3) : 531-549. doi: 10.3934/krm.2014.7.531

[16]

Yuhong Dai, Ya-xiang Yuan. Analysis of monotone gradient methods. Journal of Industrial and Management Optimization, 2005, 1 (2) : 181-192. doi: 10.3934/jimo.2005.1.181

[17]

Hong Wang, Aijie Cheng, Kaixin Wang. Fast finite volume methods for space-fractional diffusion equations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1427-1441. doi: 10.3934/dcdsb.2015.20.1427

[18]

Abdulkarim Hassan Ibrahim, Poom Kumam, Min Sun, Parin Chaipunya, Auwal Bala Abubakar. Projection method with inertial step for nonlinear equations: Application to signal recovery. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021173

[19]

Takeshi Saito, Kazuyuki Yagasaki. Chebyshev spectral methods for computing center manifolds. Journal of Computational Dynamics, 2021, 8 (2) : 165-181. doi: 10.3934/jcd.2021008

[20]

Yoonsang Lee, Bjorn Engquist. Variable step size multiscale methods for stiff and highly oscillatory dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1079-1097. doi: 10.3934/dcds.2014.34.1079

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (67)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]