November  2005, 5(4): 957-990. doi: 10.3934/dcdsb.2005.5.957

Nonisotropic 3-level quantum systems: complete solutions for minimum time and minimum energy

1. 

SISSA, via Beirut 2-4 34014 Trieste, Italy

2. 

SYSTeMS Research Group, University of Ghent, Technologiepark - Zwijnaarde 9, 9052 Zwijnaarde, Belgium

3. 

ACSIOM, I3M, CC51, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France

Received  October 2004 Revised  April 2005 Published  August 2005

We apply techniques of subriemannian geometry on Lie groups and of optimal synthesis on 2-D manifolds to the population transfer problem in a three-level quantum system driven by two laser pulses, of arbitrary shape and frequency. In the rotating wave approximation, we consider a nonisotropic model, i.e., a model in which the two coupling constants of the lasers are different. The aim is to induce transitions from the first to the third level, minimizing 1) the time of the transition (with bounded laser amplitudes), 2) the energy transferred by lasers to the system (with fixed final time). After reducing the problem to real variables, for the purpose 1) we develop a theory of time optimal syntheses for distributional problem on 2-D manifolds, while for the purpose 2) we use techniques of subriemannian geometry on 3-D Lie groups. The complete optimal syntheses are computed.
Citation: Ugo Boscain, Thomas Chambrion, Grégoire Charlot. Nonisotropic 3-level quantum systems: complete solutions for minimum time and minimum energy. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 957-990. doi: 10.3934/dcdsb.2005.5.957
[1]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[2]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[3]

Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041

[4]

Zhen Wu, Feng Zhang. Maximum principle for discrete-time stochastic optimal control problem and stochastic game. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021031

[5]

Leonardo Colombo, David Martín de Diego. Higher-order variational problems on lie groups and optimal control applications. Journal of Geometric Mechanics, 2014, 6 (4) : 451-478. doi: 10.3934/jgm.2014.6.451

[6]

Anthony M. Bloch, Peter E. Crouch, Nikolaj Nordkvist, Amit K. Sanyal. Embedded geodesic problems and optimal control for matrix Lie groups. Journal of Geometric Mechanics, 2011, 3 (2) : 197-223. doi: 10.3934/jgm.2011.3.197

[7]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[8]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

[9]

Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control & Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021

[10]

Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004

[11]

Hongwei Lou, Junjie Wen, Yashan Xu. Time optimal control problems for some non-smooth systems. Mathematical Control & Related Fields, 2014, 4 (3) : 289-314. doi: 10.3934/mcrf.2014.4.289

[12]

Akram Kheirabadi, Asadollah Mahmoudzadeh Vaziri, Sohrab Effati. Linear optimal control of time delay systems via Hermite wavelet. Numerical Algebra, Control & Optimization, 2020, 10 (2) : 143-156. doi: 10.3934/naco.2019044

[13]

Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174

[14]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[15]

Evgeny I. Veremey, Vladimir V. Eremeev. SISO H-Optimal synthesis with initially specified structure of control law. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 121-138. doi: 10.3934/naco.2017009

[16]

Elena K. Kostousova. On polyhedral control synthesis for dynamical discrete-time systems under uncertainties and state constraints. Discrete & Continuous Dynamical Systems, 2018, 38 (12) : 6149-6162. doi: 10.3934/dcds.2018153

[17]

Elena K. Kostousova. On control synthesis for uncertain dynamical discrete-time systems through polyhedral techniques. Conference Publications, 2015, 2015 (special) : 723-732. doi: 10.3934/proc.2015.0723

[18]

Zhaohua Gong, Chongyang Liu, Yujing Wang. Optimal control of switched systems with multiple time-delays and a cost on changing control. Journal of Industrial & Management Optimization, 2018, 14 (1) : 183-198. doi: 10.3934/jimo.2017042

[19]

Ying Wu, Zhaohui Yuan, Yanpeng Wu. Optimal tracking control for networked control systems with random time delays and packet dropouts. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1343-1354. doi: 10.3934/jimo.2015.11.1343

[20]

Liangquan Zhang, Qing Zhou, Juan Yang. Necessary condition for optimal control of doubly stochastic systems. Mathematical Control & Related Fields, 2020, 10 (2) : 379-403. doi: 10.3934/mcrf.2020002

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (32)

[Back to Top]