\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Error estimates for time-discretizations for the velocity tracking problem for Navier-Stokes flows by penalty methods

Abstract / Introduction Related Papers Cited by
  • Semi-discrete in time approximations of the velocity tracking problem are studied based on a pseudo-compressibility approach. Two different methods are used for the analysis of the corresponding optimality system. The first one, the classical penalty formulation, leads to estimates of order $k + \varepsilon$, under suitable regularity assumptions. The estimate is based on previously derived results for the solution of the unsteady Navier-Stokes problem by penalty methods (see e.g. Jie Shen [26]) and the Brezzi-Rappaz-Raviart theory (see e.g. [12]). The second one, based on the artificially compressible optimality system, leads to an improved estimate of the form $k + \varepsilon k$ for the linearized system.
    Mathematics Subject Classification: Primary:65M60, 35B37; Secondary: 49J20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(81) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return