January  2006, 6(1): 111-128. doi: 10.3934/dcdsb.2006.6.111

On a well-posed turbulence model

1. 

University of Pittsburgh, Department of Mathematics, Pittsburgh, PA 15260, United States

2. 

Université Rennes 1, IRMAR, UMR CNRS 6625, F-35000 Rennes, France

Received  August 2004 Revised  August 2005 Published  October 2005

This report considers mathematical properties, important for practical computations, of a model for the simulation of the motion of large eddies in a turbulent flow. In this model, closure is accomplished in the very simple way:

$\overline{u u} $˜ $\overline{\bar {u} \bar {u}}$, yielding the model
$\nabla \cdot w= 0, \quad w_{t} + \nabla \cdot (\overline{w w}) - \nu \Delta w + \nabla q = \bar {f}$.

In particular, we prove existence and uniqueness of strong solutions, develop the regularity of solutions of the model and give a rigorous bound on the modelling error, $||\bar {u} - w||$. Finally, we consider the question of non-physical vortices (false eddies), proving that the model correctly predicts that only a small amount of vorticity results when the total turning forces on the flow are small.

Citation: W. Layton, R. Lewandowski. On a well-posed turbulence model. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 111-128. doi: 10.3934/dcdsb.2006.6.111
[1]

Marcel Lesieur. Two-point closure based large-eddy simulations in turbulence, Part 1: Isotropic turbulence. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 155-168. doi: 10.3934/dcdss.2011.4.155

[2]

Marcel Lesieur. Two-point closure based large-eddy simulations in turbulence. Part 2: Inhomogeneous cases. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 227-241. doi: 10.3934/dcds.2010.28.227

[3]

John V. Shebalin. Theory and simulation of real and ideal magnetohydrodynamic turbulence. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 153-174. doi: 10.3934/dcdsb.2005.5.153

[4]

François Baccelli, Augustin Chaintreau, Danny De Vleeschauwer, David R. McDonald. HTTP turbulence. Networks and Heterogeneous Media, 2006, 1 (1) : 1-40. doi: 10.3934/nhm.2006.1.1

[5]

Eric Falcon. Laboratory experiments on wave turbulence. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 819-840. doi: 10.3934/dcdsb.2010.13.819

[6]

Fredi Tröltzsch, Alberto Valli. Optimal voltage control of non-stationary eddy current problems. Mathematical Control and Related Fields, 2018, 8 (1) : 35-56. doi: 10.3934/mcrf.2018002

[7]

Luigi Roberti. The surface current of Ekman flows with time-dependent eddy viscosity. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2463-2477. doi: 10.3934/cpaa.2022064

[8]

Yifei Lou, Sung Ha Kang, Stefano Soatto, Andrea L. Bertozzi. Video stabilization of atmospheric turbulence distortion. Inverse Problems and Imaging, 2013, 7 (3) : 839-861. doi: 10.3934/ipi.2013.7.839

[9]

Mimi Dai. Phenomenologies of intermittent Hall MHD turbulence. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021285

[10]

Cristina Anton, Jian Deng, Yau Shu Wong, Yile Zhang, Weiping Zhang, Stephan Gabos, Dorothy Yu Huang, Can Jin. Modeling and simulation for toxicity assessment. Mathematical Biosciences & Engineering, 2017, 14 (3) : 581-606. doi: 10.3934/mbe.2017034

[11]

Alexandre Boritchev. Decaying turbulence for the fractional subcritical Burgers equation. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2229-2249. doi: 10.3934/dcds.2018092

[12]

Ka Kit Tung, Wendell Welch Orlando. On the differences between 2D and QG turbulence. Discrete and Continuous Dynamical Systems - B, 2003, 3 (2) : 145-162. doi: 10.3934/dcdsb.2003.3.145

[13]

Alexey Cheskidov, Susan Friedlander, Nataša Pavlović. An inviscid dyadic model of turbulence: The global attractor. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 781-794. doi: 10.3934/dcds.2010.26.781

[14]

Nusret Balci, Ciprian Foias, M. S Jolly, Ricardo Rosa. On universal relations in 2-D turbulence. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1327-1351. doi: 10.3934/dcds.2010.27.1327

[15]

Chjan C. Lim, Ka Kit Tung. Introduction: Recent advances in vortex dynamics and turbulence. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : i-i. doi: 10.3934/dcdsb.2005.5.1i

[16]

Björn Birnir. The Kolmogorov-Obukhov-She-Leveque scaling in turbulence. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1737-1757. doi: 10.3934/cpaa.2014.13.1737

[17]

Peter R. Kramer, Joseph A. Biello, Yuri Lvov. Application of weak turbulence theory to FPU model. Conference Publications, 2003, 2003 (Special) : 482-491. doi: 10.3934/proc.2003.2003.482

[18]

Gong Chen, Peter J. Olver. Numerical simulation of nonlinear dispersive quantization. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 991-1008. doi: 10.3934/dcds.2014.34.991

[19]

Ingenuin Gasser, Marcus Kraft. Modelling and simulation of fires in tunnel networks. Networks and Heterogeneous Media, 2008, 3 (4) : 691-707. doi: 10.3934/nhm.2008.3.691

[20]

Nicolas Vauchelet. Numerical simulation of a kinetic model for chemotaxis. Kinetic and Related Models, 2010, 3 (3) : 501-528. doi: 10.3934/krm.2010.3.501

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (169)
  • HTML views (0)
  • Cited by (22)

Other articles
by authors

[Back to Top]