September  2006, 6(5): 1141-1156. doi: 10.3934/dcdsb.2006.6.1141

Competitive-exclusion versus competitive-coexistence for systems in the plane

1. 

Department of Mathematics, University of Rhode Island, Kingston, Rhode Island 02881-0816

Received  September 2005 Revised  February 2006 Published  June 2006

We investigate global behavior of

$x_{n+1} = T(x_{n}),\quad n=0,1,2,...$ (E)

where $T:\mathcal{ R}\rightarrow \mathcal{ R}$ is a competitive (monotone with respect to the south-east ordering) map on a set $\mathcal{R}\subset \mathbb{R}^2$ with nonempty interior. We assume the existence of a unique fixed point $\overline{e}$ in the interior of $\mathcal{ R}$. We give very general conditions which are easily verifiable for (E) to exhibit either competitive-exclusion or competitive-coexistence. More specifically, we obtain sufficient conditions for the interior fixed point $\overline{ e}$ to be a global attractor when $\mathcal{ R}$ is a rectangular region. We also show that when $T$ is strongly monotone in $\mathcal{ R}^{\circ}$ (interior of $\mathcal{ R}$), $\mathcal{ R}$ is convex, the unique interior equilibrium $\overline{ e}$ is a saddle, and a technical condition is satisfied, the corresponding global stable and unstable manifolds are the graphs of monotonic functions, and the global stable manifold splits the domain into two connected regions, which under additional conditions on $\mathcal{R}$ and on $T$ are shown to be basins of attraction of fixed points on the boundary of $\mathcal{R}$. Applications of the main results to specific difference equations are given.

Citation: M. R. S. Kulenović, Orlando Merino. Competitive-exclusion versus competitive-coexistence for systems in the plane. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1141-1156. doi: 10.3934/dcdsb.2006.6.1141
[1]

M. R. S. Kulenović, Orlando Merino. A global attractivity result for maps with invariant boxes. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 97-110. doi: 10.3934/dcdsb.2006.6.97

[2]

Y. Chen, L. Wang. Global attractivity of a circadian pacemaker model in a periodic environment. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 277-288. doi: 10.3934/dcdsb.2005.5.277

[3]

Chunqing Wu, Patricia J.Y. Wong. Global asymptotical stability of the coexistence fixed point of a Ricker-type competitive model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3255-3266. doi: 10.3934/dcdsb.2015.20.3255

[4]

Tobias Black. Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1253-1272. doi: 10.3934/dcdsb.2017061

[5]

Henri Schurz. Moment attractivity, stability and contractivity exponents of stochastic dynamical systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 487-515. doi: 10.3934/dcds.2001.7.487

[6]

M. R. S. Kulenović, Orlando Merino. Global bifurcation for discrete competitive systems in the plane. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 133-149. doi: 10.3934/dcdsb.2009.12.133

[7]

G. A. Enciso, E. D. Sontag. Global attractivity, I/O monotone small-gain theorems, and biological delay systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 549-578. doi: 10.3934/dcds.2006.14.549

[8]

Anatoli F. Ivanov. On global dynamics in a multi-dimensional discrete map. Conference Publications, 2015, 2015 (special) : 652-659. doi: 10.3934/proc.2015.0652

[9]

Victor Isakov. Increasing stability for the Schrödinger potential from the Dirichlet-to Neumann map. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 631-640. doi: 10.3934/dcdss.2011.4.631

[10]

Mourad Bellassoued, David Dos Santos Ferreira. Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2011, 5 (4) : 745-773. doi: 10.3934/ipi.2011.5.745

[11]

Tomás Caraballo, Gábor Kiss. Attractivity for neutral functional differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1793-1804. doi: 10.3934/dcdsb.2013.18.1793

[12]

Zhaohai Ma, Rong Yuan, Yang Wang, Xin Wu. Multidimensional stability of planar traveling waves for the delayed nonlocal dispersal competitive Lotka-Volterra system. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2069-2092. doi: 10.3934/cpaa.2019093

[13]

Qingming Gou, Wendi Wang. Global stability of two epidemic models. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 333-345. doi: 10.3934/dcdsb.2007.8.333

[14]

J.E. Muñoz Rivera, Reinhard Racke. Global stability for damped Timoshenko systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1625-1639. doi: 10.3934/dcds.2003.9.1625

[15]

Victor Isakov, Jenn-Nan Wang. Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2014, 8 (4) : 1139-1150. doi: 10.3934/ipi.2014.8.1139

[16]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability for determination of Riemannian metrics by spectral data and Dirichlet-to-Neumann map limited on arbitrary subboundary. Inverse Problems & Imaging, 2019, 13 (6) : 1213-1258. doi: 10.3934/ipi.2019054

[17]

János Karsai, John R. Graef. Attractivity properties of oscillator equations with superlinear damping. Conference Publications, 2005, 2005 (Special) : 497-504. doi: 10.3934/proc.2005.2005.497

[18]

E. Cabral Balreira, Saber Elaydi, Rafael Luís. Local stability implies global stability for the planar Ricker competition model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 323-351. doi: 10.3934/dcdsb.2014.19.323

[19]

Jianxin Yang, Zhipeng Qiu, Xue-Zhi Li. Global stability of an age-structured cholera model. Mathematical Biosciences & Engineering, 2014, 11 (3) : 641-665. doi: 10.3934/mbe.2014.11.641

[20]

Yukihiko Nakata, Yoichi Enatsu, Yoshiaki Muroya. On the global stability of an SIRS epidemic model with distributed delays. Conference Publications, 2011, 2011 (Special) : 1119-1128. doi: 10.3934/proc.2011.2011.1119

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (27)

Other articles
by authors

[Back to Top]