September  2006, 6(5): 1157-1174. doi: 10.3934/dcdsb.2006.6.1157

Parametric perturbations and non-feedback controlling chaotic motion

1. 

Physics Faculty, Moscow State University, 119992 Moscow, Russian Federation

Received  November 2005 Revised  January 2006 Published  June 2006

In this paper we generalize analytic studies the problems related to suppression of chaos and non--feedback controlling chaotic motion. We develop an analytic method of the investigation of qualitative changes in chaotic dynamical systems under certain external periodic perturbations. It is proven that for polymodal maps one can stabilize chosen in advance periodic orbits. As an example, the quadratic family of maps is considered.
    Also we demonstrate that for a piecewise linear family of maps and for a two-dimensional map having a hyperbolic attractor there are feedback-free perturbations which lead to the suppression of chaos and stabilization of certain periodic orbits.
Citation: Alexander Loskutov. Parametric perturbations and non-feedback controlling chaotic motion. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1157-1174. doi: 10.3934/dcdsb.2006.6.1157
[1]

Arsen R. Dzhanoev, Alexander Loskutov, Hongjun Cao, Miguel A.F. Sanjuán. A new mechanism of the chaos suppression. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 275-284. doi: 10.3934/dcdsb.2007.7.275

[2]

Kaijen Cheng, Kenneth Palmer, Yuh-Jenn Wu. Period 3 and chaos for unimodal maps. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1933-1949. doi: 10.3934/dcds.2014.34.1933

[3]

Ting Yang. Homoclinic orbits and chaos in the generalized Lorenz system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019210

[4]

Kang-Ling Liao, Chih-Wen Shih, Chi-Jer Yu. The snapback repellers for chaos in multi-dimensional maps. Journal of Computational Dynamics, 2018, 5 (1&2) : 81-92. doi: 10.3934/jcd.2018004

[5]

Zhujun Jing, K.Y. Chan, Dashun Xu, Hongjun Cao. Bifurcations of periodic solutions and chaos in Josephson system. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 573-592. doi: 10.3934/dcds.2001.7.573

[6]

Olivier P. Le Maître, Lionel Mathelin, Omar M. Knio, M. Yousuff Hussaini. Asynchronous time integration for polynomial chaos expansion of uncertain periodic dynamics. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 199-226. doi: 10.3934/dcds.2010.28.199

[7]

Juvencio Alberto Betancourt-Mar, José Manuel Nieto-Villar. Theoretical models for chronotherapy: Periodic perturbations in funnel chaos type. Mathematical Biosciences & Engineering, 2007, 4 (2) : 177-186. doi: 10.3934/mbe.2007.4.177

[8]

Chris Bernhardt. Vertex maps for trees: Algebra and periods of periodic orbits. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 399-408. doi: 10.3934/dcds.2006.14.399

[9]

Flaviano Battelli, Ken Palmer. Transversal periodic-to-periodic homoclinic orbits in singularly perturbed systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 367-387. doi: 10.3934/dcdsb.2010.14.367

[10]

Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757

[11]

Eric A. Carlen, Maria C. Carvalho, Jonathan Le Roux, Michael Loss, Cédric Villani. Entropy and chaos in the Kac model. Kinetic & Related Models, 2010, 3 (1) : 85-122. doi: 10.3934/krm.2010.3.85

[12]

Vadim S. Anishchenko, Tatjana E. Vadivasova, Galina I. Strelkova, George A. Okrokvertskhov. Statistical properties of dynamical chaos. Mathematical Biosciences & Engineering, 2004, 1 (1) : 161-184. doi: 10.3934/mbe.2004.1.161

[13]

Y. Charles Li. Chaos phenotypes discovered in fluids. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1383-1398. doi: 10.3934/dcds.2010.26.1383

[14]

Kaijen Cheng, Kenneth Palmer. Chaos in a model for masting. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1917-1932. doi: 10.3934/dcdsb.2015.20.1917

[15]

Flaviano Battelli, Michal Fe?kan. Chaos in forced impact systems. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 861-890. doi: 10.3934/dcdss.2013.6.861

[16]

J. Alberto Conejero, Francisco Rodenas, Macarena Trujillo. Chaos for the Hyperbolic Bioheat Equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 653-668. doi: 10.3934/dcds.2015.35.653

[17]

Ghassen Askri. Li-Yorke chaos for dendrite maps with zero topological entropy and ω-limit sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 2957-2976. doi: 10.3934/dcds.2017127

[18]

Elbaz I. Abouelmagd, Juan Luis García Guirao, Jaume Llibre. Periodic orbits for the perturbed planar circular restricted 3–body problem. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1007-1020. doi: 10.3934/dcdsb.2019003

[19]

Piotr Oprocha. Specification properties and dense distributional chaos. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 821-833. doi: 10.3934/dcds.2007.17.821

[20]

Piotr Oprocha, Pawel Wilczynski. Distributional chaos via isolating segments. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 347-356. doi: 10.3934/dcdsb.2007.8.347

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]