November  2006, 6(6): 1239-1260. doi: 10.3934/dcdsb.2006.6.1239

Global existence results for complex hyperbolic models of bacterial chemotaxis


University of Oxford, Mathematical Institute, 24-29 St Giles', Oxford, OX1 3LB, United Kingdom


Trinity College Dublin, School of Mathematics, Dublin 2, Ireland

Received  December 2005 Revised  July 2006 Published  August 2006

Bacteria are able to respond to environmental signals by changing their rules of movement. When we take into account chemical signals in the environment, this behaviour is often called chemotaxis. At the individual-level, chemotaxis consists of several steps. First, the cell detects the extracellular signal using receptors on its membrane. Then, the cell processes the signal information through the intracellular signal transduction network, and finally it responds by altering its motile behaviour accordingly. At the population level, chemotaxis can lead to aggregation of bacteria, travelling waves or pattern formation, and the important task is to explain the population-level behaviour in terms of individual-based models. It has been previously shown that the transport equation framework [12, 13] is suitable for connecting different levels of modelling of bacterial chemotaxis. In this paper, we couple the transport equation for bacteria with the (parabolic/elliptic) equation for the extracellular signals. We prove global existence of solutions for the general hyperbolic chemotaxis models of cells which process the information about the extracellular signal through the intracellular biochemical network and interact by altering the extracellular signal as well. Working in one spatial dimension with multi-dimensional internal dynamics, conditions for global existence in terms of the properties of the signal transduction model are given.
Citation: Radek Erban, Hyung Ju Hwang. Global existence results for complex hyperbolic models of bacterial chemotaxis. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1239-1260. doi: 10.3934/dcdsb.2006.6.1239

Radek Erban, Jan Haskovec. From individual to collective behaviour of coupled velocity jump processes: A locust example. Kinetic & Related Models, 2012, 5 (4) : 817-842. doi: 10.3934/krm.2012.5.817


Marco Di Francesco, Alexander Lorz, Peter A. Markowich. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1437-1453. doi: 10.3934/dcds.2010.28.1437


Roman Czapla, Vladimir V. Mityushev. A criterion of collective behavior of bacteria. Mathematical Biosciences & Engineering, 2017, 14 (1) : 277-287. doi: 10.3934/mbe.2017018


Hantaek Bae, Rafael Granero-Belinchón, Omar Lazar. On the local and global existence of solutions to 1d transport equations with nonlocal velocity. Networks & Heterogeneous Media, 2019, 14 (3) : 471-487. doi: 10.3934/nhm.2019019


Nikolaos Bournaveas, Vincent Calvez. Global existence for the kinetic chemotaxis model without pointwise memory effects, and including internal variables. Kinetic & Related Models, 2008, 1 (1) : 29-48. doi: 10.3934/krm.2008.1.29


Keyan Wang. Global well-posedness for a transport equation with non-local velocity and critical diffusion. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1203-1210. doi: 10.3934/cpaa.2008.7.1203


Deborah C. Markham, Ruth E. Baker, Philip K. Maini. Modelling collective cell behaviour. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5123-5133. doi: 10.3934/dcds.2014.34.5123


Isabelle Kuhwald, Ilya Pavlyukevich. Bistable behaviour of a jump-diffusion driven by a periodic stable-like additive process. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3175-3190. doi: 10.3934/dcdsb.2016092


Proscovia Namayanja. Chaotic dynamics in a transport equation on a network. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3415-3426. doi: 10.3934/dcdsb.2018283


Tomomi Yokota, Noriaki Yoshino. Existence of solutions to chemotaxis dynamics with logistic source. Conference Publications, 2015, 2015 (special) : 1125-1133. doi: 10.3934/proc.2015.1125


T. Hillen, K. Painter, Christian Schmeiser. Global existence for chemotaxis with finite sampling radius. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 125-144. doi: 10.3934/dcdsb.2007.7.125


Sainan Wu, Junping Shi, Boying Wu. Global existence of solutions to an attraction-repulsion chemotaxis model with growth. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1037-1058. doi: 10.3934/cpaa.2017050


Johannes Lankeit, Yulan Wang. Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6099-6121. doi: 10.3934/dcds.2017262


Abelardo Duarte-Rodríguez, Lucas C. F. Ferreira, Élder J. Villamizar-Roa. Global existence for an attraction-repulsion chemotaxis fluid model with logistic source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 423-447. doi: 10.3934/dcdsb.2018180


Huanhuan Qiu, Shangjiang Guo. Global existence and stability in a two-species chemotaxis system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1569-1587. doi: 10.3934/dcdsb.2018220


Liviu I. Ignat, Ademir F. Pazoto. Large time behaviour for a nonlocal diffusion - convection equation related with gas dynamics. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3575-3589. doi: 10.3934/dcds.2014.34.3575


Zhi-An Wang, Kun Zhao. Global dynamics and diffusion limit of a one-dimensional repulsive chemotaxis model. Communications on Pure & Applied Analysis, 2013, 12 (6) : 3027-3046. doi: 10.3934/cpaa.2013.12.3027


Youshan Tao. Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2705-2722. doi: 10.3934/dcdsb.2013.18.2705


Ke Lin, Chunlai Mu. Global dynamics in a fully parabolic chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5025-5046. doi: 10.3934/dcds.2016018


Sebastian Aniţa, William Edward Fitzgibbon, Michel Langlais. Global existence and internal stabilization for a reaction-diffusion system posed on non coincident spatial domains. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 805-822. doi: 10.3934/dcdsb.2009.11.805

2018 Impact Factor: 1.008


  • PDF downloads (5)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]