# American Institute of Mathematical Sciences

January  2006, 6(1): 215-224. doi: 10.3934/dcdsb.2006.6.215

## Best response dynamics for continuous zero--sum games

 1 Department of Mathematics, University College London, London WC1E 6BT, United Kingdom 2 Laboratoire d'Econométrie, Ecole Polytechnique, 1 rue Descartes, 75005 Paris, France

Received  August 2005 Revised  October 2005 Published  October 2005

We study best response dynamics in continuous time for continuous concave-convex zero-sum games and prove convergence of its trajectories to the set of saddle points, thus providing a dynamical proof of the minmax theorem. Consequences for the corresponding discrete time process with small or diminishing step-sizes are established, including convergence of the fictitious play procedure.
Citation: Josef Hofbauer, Sylvain Sorin. Best response dynamics for continuous zero--sum games. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 215-224. doi: 10.3934/dcdsb.2006.6.215
 [1] Georg Ostrovski, Sebastian van Strien. Payoff performance of fictitious play. Journal of Dynamics and Games, 2014, 1 (4) : 621-638. doi: 10.3934/jdg.2014.1.621 [2] Jiequn Han, Ruimeng Hu, Jihao Long. Convergence of deep fictitious play for stochastic differential games. Frontiers of Mathematical Finance, 2022, 1 (2) : 287-319. doi: 10.3934/fmf.2021011 [3] Peter Bednarik, Josef Hofbauer. Discretized best-response dynamics for the Rock-Paper-Scissors game. Journal of Dynamics and Games, 2017, 4 (1) : 75-86. doi: 10.3934/jdg.2017005 [4] Jinliang Wang, Jiying Lang, Xianning Liu. Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3215-3233. doi: 10.3934/dcdsb.2015.20.3215 [5] Sze-Bi Hsu, Tzy-Wei Hwang, Yang Kuang. Global dynamics of a Predator-Prey model with Hassell-Varley Type functional response. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 857-871. doi: 10.3934/dcdsb.2008.10.857 [6] Xin Jiang, Zhikun She, Shigui Ruan. Global dynamics of a predator-prey system with density-dependent mortality and ratio-dependent functional response. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1967-1990. doi: 10.3934/dcdsb.2020041 [7] Fernando Jiménez, Jürgen Scheurle. On the discretization of nonholonomic dynamics in $\mathbb{R}^n$. Journal of Geometric Mechanics, 2015, 7 (1) : 43-80. doi: 10.3934/jgm.2015.7.43 [8] Haitao Song, Weihua Jiang, Shengqiang Liu. Virus dynamics model with intracellular delays and immune response. Mathematical Biosciences & Engineering, 2015, 12 (1) : 185-208. doi: 10.3934/mbe.2015.12.185 [9] He Huang, Zhen He. A global optimization method for multiple response optimization problems. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022016 [10] Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215 [11] I. D. Chueshov, Iryna Ryzhkova. A global attractor for a fluid--plate interaction model. Communications on Pure and Applied Analysis, 2013, 12 (4) : 1635-1656. doi: 10.3934/cpaa.2013.12.1635 [12] Yirong Jiang, Nanjing Huang, Zhouchao Wei. Existence of a global attractor for fractional differential hemivariational inequalities. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1193-1212. doi: 10.3934/dcdsb.2019216 [13] Hiroshi Matano, Ken-Ichi Nakamura. The global attractor of semilinear parabolic equations on $S^1$. Discrete and Continuous Dynamical Systems, 1997, 3 (1) : 1-24. doi: 10.3934/dcds.1997.3.1 [14] Yuncheng You. Global attractor of the Gray-Scott equations. Communications on Pure and Applied Analysis, 2008, 7 (4) : 947-970. doi: 10.3934/cpaa.2008.7.947 [15] Alexey Cheskidov, Susan Friedlander, Nataša Pavlović. An inviscid dyadic model of turbulence: The global attractor. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 781-794. doi: 10.3934/dcds.2010.26.781 [16] Rana D. Parshad, Juan B. Gutierrez. On the global attractor of the Trojan Y Chromosome model. Communications on Pure and Applied Analysis, 2011, 10 (1) : 339-359. doi: 10.3934/cpaa.2011.10.339 [17] Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5321-5335. doi: 10.3934/dcdsb.2020345 [18] Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6207-6228. doi: 10.3934/dcdsb.2021015 [19] Matthew Foreman, Benjamin Weiss. From odometers to circular systems: A global structure theorem. Journal of Modern Dynamics, 2019, 15: 345-423. doi: 10.3934/jmd.2019024 [20] Piotr Fijałkowski. A global inversion theorem for functions with singular points. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 173-180. doi: 10.3934/dcdsb.2018011

2021 Impact Factor: 1.497