
Previous Article
Homogenized Maxwell's equations; A model for ceramic varistors
 DCDSB Home
 This Issue

Next Article
Introduction
Analysis of a corner layer problem in anisotropic interfaces
1.  Department of Mathematics, University of North Texas, Denton TX 76203, USA and University of Athens, Athens, Greece 
2.  P.W. Bates, Department of Mathematics, Michigan State University, East Lansing, MI 48824, United States 
3.  Division of Materials Science, N.I.S.T., Gaithersburg, MD 20899, United States 
4.  Department of Mathematics, University of Utah, Salt Lake City, UT 84112, United States 
5.  Univ. degli Studi dell'Aquila, L'Aquila, Italy 
6.  Department of Mathematics, Izmir Institute of Technology, Izmir, Turkey 
[1] 
Navnit Jha. Nonpolynomial spline finite difference scheme for nonlinear singuiar boundary value problems with singular perturbation and its mechanization. Conference Publications, 2013, 2013 (special) : 355363. doi: 10.3934/proc.2013.2013.355 
[2] 
ChangYeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems  A, 2009, 23 (1&2) : 315339. doi: 10.3934/dcds.2009.23.315 
[3] 
Mark I. Vishik, Sergey Zelik. Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit. Communications on Pure & Applied Analysis, 2014, 13 (5) : 20592093. doi: 10.3934/cpaa.2014.13.2059 
[4] 
ZhengJian Bai, XiaoQing Jin, SeakWeng Vong. On some inverse singular value problems with Toeplitzrelated structure. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 187192. doi: 10.3934/naco.2012.2.187 
[5] 
Felix Sadyrbaev. Nonlinear boundary value problems of the calculus of variations. Conference Publications, 2003, 2003 (Special) : 760770. doi: 10.3934/proc.2003.2003.760 
[6] 
Feliz Minhós, Rui Carapinha. On higher order nonlinear impulsive boundary value problems. Conference Publications, 2015, 2015 (special) : 851860. doi: 10.3934/proc.2015.0851 
[7] 
John V. Baxley, Philip T. Carroll. Nonlinear boundary value problems with multiple positive solutions. Conference Publications, 2003, 2003 (Special) : 8390. doi: 10.3934/proc.2003.2003.83 
[8] 
Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II. Networks & Heterogeneous Media, 2015, 10 (4) : 897948. doi: 10.3934/nhm.2015.10.897 
[9] 
Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks & Heterogeneous Media, 2013, 8 (4) : 10091034. doi: 10.3934/nhm.2013.8.1009 
[10] 
Panos K. Palamides, Alex P. Palamides. Singular boundary value problems, via Sperner's lemma. Conference Publications, 2007, 2007 (Special) : 814823. doi: 10.3934/proc.2007.2007.814 
[11] 
M. Gaudenzi, P. Habets, F. Zanolin. Positive solutions of superlinear boundary value problems with singular indefinite weight. Communications on Pure & Applied Analysis, 2003, 2 (3) : 411423. doi: 10.3934/cpaa.2003.2.411 
[12] 
P. Lima, L. Morgado. Analysis of singular boundary value problems for an EmdenFowler equation. Communications on Pure & Applied Analysis, 2006, 5 (2) : 321336. doi: 10.3934/cpaa.2006.5.321 
[13] 
Zongming Guo, Yunting Yu. Boundary value problems for a semilinear elliptic equation with singular nonlinearity. Communications on Pure & Applied Analysis, 2016, 15 (2) : 399412. doi: 10.3934/cpaa.2016.15.399 
[14] 
Stefano Biagi, Teresa Isernia. On the solvability of singular boundary value problems on the real line in the critical growth case. Discrete & Continuous Dynamical Systems  A, 2020, 40 (2) : 11311157. doi: 10.3934/dcds.2020073 
[15] 
Luis Alvarez, Jesús Ildefonso Díaz. On the retention of the interfaces in some elliptic and parabolic nonlinear problems. Discrete & Continuous Dynamical Systems  A, 2009, 25 (1) : 117. doi: 10.3934/dcds.2009.25.1 
[16] 
Nobuyuki Kato. Linearized stability and asymptotic properties for abstract boundary value functional evolution problems. Conference Publications, 1998, 1998 (Special) : 371387. doi: 10.3934/proc.1998.1998.371 
[17] 
GungMin Gie, Makram Hamouda, Roger Témam. Boundary layers in smooth curvilinear domains: Parabolic problems. Discrete & Continuous Dynamical Systems  A, 2010, 26 (4) : 12131240. doi: 10.3934/dcds.2010.26.1213 
[18] 
Gabriele Bonanno, Giuseppina D'Aguì, Angela Sciammetta. Onedimensional nonlinear boundary value problems with variable exponent. Discrete & Continuous Dynamical Systems  S, 2018, 11 (2) : 179191. doi: 10.3934/dcdss.2018011 
[19] 
Sofia Giuffrè, Giovanna Idone. On linear and nonlinear elliptic boundary value problems in the plane with discontinuous coefficients. Discrete & Continuous Dynamical Systems  A, 2011, 31 (4) : 13471363. doi: 10.3934/dcds.2011.31.1347 
[20] 
Grey Ballard, John Baxley, Nisrine Libbus. Qualitative behavior and computation of multiple solutions of nonlinear boundary value problems. Communications on Pure & Applied Analysis, 2006, 5 (2) : 251259. doi: 10.3934/cpaa.2006.5.251 
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]