# American Institute of Mathematical Sciences

March  2006, 6(2): 339-356. doi: 10.3934/dcdsb.2006.6.339

## Alignment and rheo-oscillator criteria for sheared nematic polymer films in the monolayer limit

 1 Department of Mathematics, Institute for Advanced Materials, Nanoscience & Technology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599-3250, United States 2 Department of Mathematics & Institute for Advanced Materials, University of North Carolina, Chapel Hill, NC 27599-3250, United States 3 Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529, United States

Received  March 2005 Revised  September 2005 Published  December 2005

Monolayer films of liquid crystalline polymers (LCPs) are modelled with a mesoscopic two-dimensional (2D) analogue of the Doi-Hess (1981, 1976) rigid rod model. One aim is to establish a more complete solution to the classical problem of how orientational degeneracy of quiescent nematic equilibria breaks in weak shear. We exploit the simplicity of 2D liquids to extend results of Kuzuu and Doi (1983,1984), Marrucci and Maffetone (1989-1991), See, Doi and Larson (1990), Forest et al. (2003-2004). We recall the distinction between two versus three dimensional quiescent phase diagrams and the isotropic-nematic phase transition, then analyze the deformation of these respective bifurcation diagrams in shear flow. We give a simple proof that limit cycles, known as tumbling orbits, must arise beyond the parameter boundary for the steady-unsteady transition. Finally, we show the shear-perturbed 2D phase diagram is significantly more robust to closure approximations than the 3D system.
Citation: Joo Hee Lee, M. Gregory Forest, Ruhai Zhou. Alignment and rheo-oscillator criteria for sheared nematic polymer films in the monolayer limit. Discrete and Continuous Dynamical Systems - B, 2006, 6 (2) : 339-356. doi: 10.3934/dcdsb.2006.6.339
 [1] Zhenlu Cui, Qi Wang. Permeation flows in cholesteric liquid crystal polymers under oscillatory shear. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 45-60. doi: 10.3934/dcdsb.2011.15.45 [2] Zhenlu Cui, M. Carme Calderer, Qi Wang. Mesoscale structures in flows of weakly sheared cholesteric liquid crystal polymers. Discrete and Continuous Dynamical Systems - B, 2006, 6 (2) : 291-310. doi: 10.3934/dcdsb.2006.6.291 [3] Ke Xu, M. Gregory Forest, Xiaofeng Yang. Shearing the I-N phase transition of liquid crystalline polymers: Long-time memory of defect initial data. Discrete and Continuous Dynamical Systems - B, 2011, 15 (2) : 457-473. doi: 10.3934/dcdsb.2011.15.457 [4] Hong Zhou, M. Gregory Forest, Qi Wang. Anchoring-induced texture & shear banding of nematic polymers in shear cells. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 707-733. doi: 10.3934/dcdsb.2007.8.707 [5] Zhaoyang Qiu, Yixuan Wang. Martingale solution for stochastic active liquid crystal system. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2227-2268. doi: 10.3934/dcds.2020360 [6] Bagisa Mukherjee, Chun Liu. On the stability of two nematic liquid crystal configurations. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 561-574. doi: 10.3934/dcdsb.2002.2.561 [7] M. Gregory Forest, Hongyun Wang, Hong Zhou. Sheared nematic liquid crystal polymer monolayers. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 497-517. doi: 10.3934/dcdsb.2009.11.497 [8] Domenico Mucci. Maps into projective spaces: Liquid crystal and conformal energies. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 597-635. doi: 10.3934/dcdsb.2012.17.597 [9] Muhammad Mansha Ghalib, Azhar Ali Zafar, Zakia Hammouch, Muhammad Bilal Riaz, Khurram Shabbir. Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 683-693. doi: 10.3934/dcdss.2020037 [10] Eric P. Choate, Hong Zhou. Optimization of electromagnetic wave propagation through a liquid crystal layer. Discrete and Continuous Dynamical Systems - S, 2015, 8 (2) : 303-312. doi: 10.3934/dcdss.2015.8.303 [11] Shanshan Guo, Zhong Tan. Energy dissipation for weak solutions of incompressible liquid crystal flows. Kinetic and Related Models, 2015, 8 (4) : 691-706. doi: 10.3934/krm.2015.8.691 [12] Jihong Zhao, Qiao Liu, Shangbin Cui. Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows. Communications on Pure and Applied Analysis, 2013, 12 (1) : 341-357. doi: 10.3934/cpaa.2013.12.341 [13] Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455 [14] T. Tachim Medjo. On the existence and uniqueness of solution to a stochastic simplified liquid crystal model. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2243-2264. doi: 10.3934/cpaa.2019101 [15] Chun Liu, Jie Shen. On liquid crystal flows with free-slip boundary conditions. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 307-318. doi: 10.3934/dcds.2001.7.307 [16] Qiang Tao, Ying Yang. Exponential stability for the compressible nematic liquid crystal flow with large initial data. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1661-1669. doi: 10.3934/cpaa.2016007 [17] Patricia Bauman, Daniel Phillips. Analysis and stability of bent-core liquid crystal fibers. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1707-1728. doi: 10.3934/dcdsb.2012.17.1707 [18] Xiaoli Li, Boling Guo. Well-posedness for the three-dimensional compressible liquid crystal flows. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1913-1937. doi: 10.3934/dcdss.2016078 [19] Sili Liu, Xinhua Zhao, Yingshan Chen. A new blowup criterion for strong solutions of the compressible nematic liquid crystal flow. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4515-4533. doi: 10.3934/dcdsb.2020110 [20] M. Carme Calderer, Carlos A. Garavito Garzón, Baisheng Yan. A Landau--de Gennes theory of liquid crystal elastomers. Discrete and Continuous Dynamical Systems - S, 2015, 8 (2) : 283-302. doi: 10.3934/dcdss.2015.8.283

2021 Impact Factor: 1.497

## Metrics

• HTML views (0)
• Cited by (0)

• on AIMS