March  2006, 6(2): 339-356. doi: 10.3934/dcdsb.2006.6.339

Alignment and rheo-oscillator criteria for sheared nematic polymer films in the monolayer limit

1. 

Department of Mathematics, Institute for Advanced Materials, Nanoscience & Technology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599-3250, United States

2. 

Department of Mathematics & Institute for Advanced Materials, University of North Carolina, Chapel Hill, NC 27599-3250, United States

3. 

Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529, United States

Received  March 2005 Revised  September 2005 Published  December 2005

Monolayer films of liquid crystalline polymers (LCPs) are modelled with a mesoscopic two-dimensional (2D) analogue of the Doi-Hess (1981, 1976) rigid rod model. One aim is to establish a more complete solution to the classical problem of how orientational degeneracy of quiescent nematic equilibria breaks in weak shear. We exploit the simplicity of 2D liquids to extend results of Kuzuu and Doi (1983,1984), Marrucci and Maffetone (1989-1991), See, Doi and Larson (1990), Forest et al. (2003-2004). We recall the distinction between two versus three dimensional quiescent phase diagrams and the isotropic-nematic phase transition, then analyze the deformation of these respective bifurcation diagrams in shear flow. We give a simple proof that limit cycles, known as tumbling orbits, must arise beyond the parameter boundary for the steady-unsteady transition. Finally, we show the shear-perturbed 2D phase diagram is significantly more robust to closure approximations than the 3D system.
Citation: Joo Hee Lee, M. Gregory Forest, Ruhai Zhou. Alignment and rheo-oscillator criteria for sheared nematic polymer films in the monolayer limit. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 339-356. doi: 10.3934/dcdsb.2006.6.339
[1]

Zhenlu Cui, Qi Wang. Permeation flows in cholesteric liquid crystal polymers under oscillatory shear. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 45-60. doi: 10.3934/dcdsb.2011.15.45

[2]

Zhenlu Cui, M. Carme Calderer, Qi Wang. Mesoscale structures in flows of weakly sheared cholesteric liquid crystal polymers. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 291-310. doi: 10.3934/dcdsb.2006.6.291

[3]

Ke Xu, M. Gregory Forest, Xiaofeng Yang. Shearing the I-N phase transition of liquid crystalline polymers: Long-time memory of defect initial data. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 457-473. doi: 10.3934/dcdsb.2011.15.457

[4]

Hong Zhou, M. Gregory Forest, Qi Wang. Anchoring-induced texture & shear banding of nematic polymers in shear cells. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 707-733. doi: 10.3934/dcdsb.2007.8.707

[5]

M. Gregory Forest, Hongyun Wang, Hong Zhou. Sheared nematic liquid crystal polymer monolayers. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 497-517. doi: 10.3934/dcdsb.2009.11.497

[6]

Bagisa Mukherjee, Chun Liu. On the stability of two nematic liquid crystal configurations. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 561-574. doi: 10.3934/dcdsb.2002.2.561

[7]

Domenico Mucci. Maps into projective spaces: Liquid crystal and conformal energies. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 597-635. doi: 10.3934/dcdsb.2012.17.597

[8]

Muhammad Mansha Ghalib, Azhar Ali Zafar, Zakia Hammouch, Muhammad Bilal Riaz, Khurram Shabbir. Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 683-693. doi: 10.3934/dcdss.2020037

[9]

Eric P. Choate, Hong Zhou. Optimization of electromagnetic wave propagation through a liquid crystal layer. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 303-312. doi: 10.3934/dcdss.2015.8.303

[10]

Jihong Zhao, Qiao Liu, Shangbin Cui. Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows. Communications on Pure & Applied Analysis, 2013, 12 (1) : 341-357. doi: 10.3934/cpaa.2013.12.341

[11]

Shanshan Guo, Zhong Tan. Energy dissipation for weak solutions of incompressible liquid crystal flows. Kinetic & Related Models, 2015, 8 (4) : 691-706. doi: 10.3934/krm.2015.8.691

[12]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

[13]

Chun Liu, Jie Shen. On liquid crystal flows with free-slip boundary conditions. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 307-318. doi: 10.3934/dcds.2001.7.307

[14]

Qiang Tao, Ying Yang. Exponential stability for the compressible nematic liquid crystal flow with large initial data. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1661-1669. doi: 10.3934/cpaa.2016007

[15]

Patricia Bauman, Daniel Phillips. Analysis and stability of bent-core liquid crystal fibers. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1707-1728. doi: 10.3934/dcdsb.2012.17.1707

[16]

Xiaoli Li, Boling Guo. Well-posedness for the three-dimensional compressible liquid crystal flows. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1913-1937. doi: 10.3934/dcdss.2016078

[17]

M. Carme Calderer, Carlos A. Garavito Garzón, Baisheng Yan. A Landau--de Gennes theory of liquid crystal elastomers. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 283-302. doi: 10.3934/dcdss.2015.8.283

[18]

Junyu Lin. Uniqueness of harmonic map heat flows and liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 739-755. doi: 10.3934/dcds.2013.33.739

[19]

T. Tachim Medjo. On the existence and uniqueness of solution to a stochastic simplified liquid crystal model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2243-2264. doi: 10.3934/cpaa.2019101

[20]

Yoshihiro Shibata. Global well-posedness of unsteady motion of viscous incompressible capillary liquid bounded by a free surface. Evolution Equations & Control Theory, 2018, 7 (1) : 117-152. doi: 10.3934/eect.2018007

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]