• Previous Article
    Meyers type estimates for approximate solutions of nonlinear elliptic equations and their applications
  • DCDS-B Home
  • This Issue
  • Next Article
    On the number of limit cycles in a predator prey model with non-monotonic functional response
May  2006, 6(3): 493-523. doi: 10.3934/dcdsb.2006.6.493

Dispersive evolution of pulses in oscillator chains with general interaction potentials

1. 

Weierstraß-Institut für Angewandte Analysis und Stochastik, Mohrenstraße 39, D-10117 Berlin, Germany

2. 

Weierstraß-Institut für Angewandte Analysis und Stochastik, Mohrenstraße 39, 10117 Berlin, Germany

Received  July 2005 Revised  November 2005 Published  February 2006

We study the dispersive evolution of modulated pulses in a nonlinear oscillator chain embedded in a background field. The atoms of the chain interact pairwise with an arbitrary but finite number of neighbors. The pulses are modeled as macroscopic modulations of the exact spatiotemporally periodic solutions of the linearized model. The scaling of amplitude, space and time is chosen in such a way that we can describe how the envelope changes in time due to dispersive effects. By this multiscale ansatz we find that the macroscopic evolution of the amplitude is given by the nonlinear Schrödinger equation. The main part of the work is focused on the justification of the formally derived equation: We show that solutions which have initially the form of the assumed ansatz preserve this form over time-intervals with a positive macroscopic length. The proof is based on a normal-form transformation constructed in Fourier space, and the results depend on the validity of suitable nonresonance conditions.
Citation: Johannes Giannoulis, Alexander Mielke. Dispersive evolution of pulses in oscillator chains with general interaction potentials. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 493-523. doi: 10.3934/dcdsb.2006.6.493
[1]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[2]

Pablo Amster, Pablo De Nápoli. Non-asymptotic Lazer-Leach type conditions for a nonlinear oscillator. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 757-767. doi: 10.3934/dcds.2011.29.757

[3]

Anatoli Babin, Alexander Figotin. Newton's law for a trajectory of concentration of solutions to nonlinear Schrodinger equation. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1685-1718. doi: 10.3934/cpaa.2014.13.1685

[4]

José M. Arrieta, Simone M. Bruschi. Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a non uniformly Lipschitz deformation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 327-351. doi: 10.3934/dcdsb.2010.14.327

[5]

Miroslav Grmela, Michal Pavelka. Landau damping in the multiscale Vlasov theory. Kinetic & Related Models, 2018, 11 (3) : 521-545. doi: 10.3934/krm.2018023

[6]

Marco Squassina. Preface: Recent progresses in the theory of nonlinear nonlocal problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : i-i. doi: 10.3934/dcdss.201803i

[7]

Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703

[8]

Angelo B. Mingarelli. Nonlinear functionals in oscillation theory of matrix differential systems. Communications on Pure & Applied Analysis, 2004, 3 (1) : 75-84. doi: 10.3934/cpaa.2004.3.75

[9]

John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations & Control Theory, 2019, 8 (1) : 1-29. doi: 10.3934/eect.2019001

[10]

Stefan Siegmund. Normal form of Duffing-van der Pol oscillator under nonautonomous parametric perturbations. Conference Publications, 2001, 2001 (Special) : 357-361. doi: 10.3934/proc.2001.2001.357

[11]

Silvia Cingolani, Mónica Clapp. Symmetric semiclassical states to a magnetic nonlinear Schrödinger equation via equivariant Morse theory. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1263-1281. doi: 10.3934/cpaa.2010.9.1263

[12]

Marc Briant. Perturbative theory for the Boltzmann equation in bounded domains with different boundary conditions. Kinetic & Related Models, 2017, 10 (2) : 329-371. doi: 10.3934/krm.2017014

[13]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Existence and applications to the level-set approach. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1047-1069. doi: 10.3934/dcds.2008.21.1047

[14]

Arnaud Münch, Ademir Fernando Pazoto. Boundary stabilization of a nonlinear shallow beam: theory and numerical approximation. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 197-219. doi: 10.3934/dcdsb.2008.10.197

[15]

Juan-Luis Vázquez. Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 857-885. doi: 10.3934/dcdss.2014.7.857

[16]

Jerrold E. Marsden, Alexey Tret'yakov. Factor analysis of nonlinear mappings: p-regularity theory. Communications on Pure & Applied Analysis, 2003, 2 (4) : 425-445. doi: 10.3934/cpaa.2003.2.425

[17]

Lorena Bociu, Barbara Kaltenbacher, Petronela Radu. Preface: Introduction to the Special Volume on Nonlinear PDEs and Control Theory with Applications. Evolution Equations & Control Theory, 2013, 2 (2) : i-ii. doi: 10.3934/eect.2013.2.2i

[18]

Maike Schulte, Anton Arnold. Discrete transparent boundary conditions for the Schrodinger equation -- a compact higher order scheme. Kinetic & Related Models, 2008, 1 (1) : 101-125. doi: 10.3934/krm.2008.1.101

[19]

Guillaume James, Dmitry Pelinovsky. Breather continuation from infinity in nonlinear oscillator chains. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1775-1799. doi: 10.3934/dcds.2012.32.1775

[20]

John Burke, Edgar Knobloch. Normal form for spatial dynamics in the Swift-Hohenberg equation. Conference Publications, 2007, 2007 (Special) : 170-180. doi: 10.3934/proc.2007.2007.170

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (19)

Other articles
by authors

[Back to Top]