July  2006, 6(4): 651-666. doi: 10.3934/dcdsb.2006.6.651

Large deviation principle for a stochastic navier-Stokes equation in its vorticity form for a two-dimensional incompressible flow

1. 

Department of Statistics, University of Michigan, 439 West Hall, 1085 S. University Ave., Ann Arbor, MI 48109-1107, United States

2. 

Department of Mathematics, University of Tennessee, 121 Ayres Hall, 1403 Circle Drive, Knoxville, TN 37996-1300, United States

Received  February 2005 Revised  September 2005 Published  April 2006

We derive a large deviation principle for a stochastic Navier-Stokes equation for the vorticity of a two-dimensional fluid when the magnitude of the random term tends to zero. The key is the verification of the exponential tightness for the stochastic vorticity.
Citation: Anna Amirdjanova, Jie Xiong. Large deviation principle for a stochastic navier-Stokes equation in its vorticity form for a two-dimensional incompressible flow. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 651-666. doi: 10.3934/dcdsb.2006.6.651
[1]

Yueling Li, Yingchao Xie, Xicheng Zhang. Large deviation principle for stochastic heat equation with memory. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5221-5237. doi: 10.3934/dcds.2015.35.5221

[2]

Igor Kukavica, Mohammed Ziane. Regularity of the Navier-Stokes equation in a thin periodic domain with large data. Discrete & Continuous Dynamical Systems, 2006, 16 (1) : 67-86. doi: 10.3934/dcds.2006.16.67

[3]

Hugo Beirão da Veiga. Navier-Stokes equations: Some questions related to the direction of the vorticity. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 203-213. doi: 10.3934/dcdss.2019014

[4]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5421-5448. doi: 10.3934/dcdsb.2020352

[5]

Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the Navier-Stokes equation. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1511-1560. doi: 10.3934/cpaa.2018073

[6]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

[7]

Joanna Rencławowicz, Wojciech M. Zajączkowski. Global regular solutions to the Navier-Stokes equations with large flux. Conference Publications, 2011, 2011 (Special) : 1234-1243. doi: 10.3934/proc.2011.2011.1234

[8]

Takeshi Taniguchi. The exponential behavior of Navier-Stokes equations with time delay external force. Discrete & Continuous Dynamical Systems, 2005, 12 (5) : 997-1018. doi: 10.3934/dcds.2005.12.997

[9]

Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete & Continuous Dynamical Systems, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148

[10]

Guangrong Wu, Ping Zhang. The zero diffusion limit of 2-D Navier-Stokes equations with $L^1$ initial vorticity. Discrete & Continuous Dynamical Systems, 1999, 5 (3) : 631-638. doi: 10.3934/dcds.1999.5.631

[11]

Matthew Gardner, Adam Larios, Leo G. Rebholz, Duygu Vargun, Camille Zerfas. Continuous data assimilation applied to a velocity-vorticity formulation of the 2D Navier-Stokes equations. Electronic Research Archive, 2021, 29 (3) : 2223-2247. doi: 10.3934/era.2020113

[12]

Ana Bela Cruzeiro. Navier-Stokes and stochastic Navier-Stokes equations via Lagrange multipliers. Journal of Geometric Mechanics, 2019, 11 (4) : 553-560. doi: 10.3934/jgm.2019027

[13]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[14]

Kazuo Yamazaki. Large deviation principle for the micropolar, magneto-micropolar fluid systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 913-938. doi: 10.3934/dcdsb.2018048

[15]

Hongyong Cui, Mirelson M. Freitas, José A. Langa. Squeezing and finite dimensionality of cocycle attractors for 2D stochastic Navier-Stokes equation with non-autonomous forcing. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1297-1324. doi: 10.3934/dcdsb.2018152

[16]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[17]

I. Moise, Roger Temam. Renormalization group method: Application to Navier-Stokes equation. Discrete & Continuous Dynamical Systems, 2000, 6 (1) : 191-210. doi: 10.3934/dcds.2000.6.191

[18]

Tao Wang, Huijiang Zhao, Qingyang Zou. One-dimensional compressible Navier-Stokes equations with large density oscillation. Kinetic & Related Models, 2013, 6 (3) : 649-670. doi: 10.3934/krm.2013.6.649

[19]

Qi S. Zhang. An example of large global smooth solution of 3 dimensional Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5521-5523. doi: 10.3934/dcds.2013.33.5521

[20]

Xinhua Zhao, Zilai Li. Asymptotic behavior of spherically or cylindrically symmetric solutions to the compressible Navier-Stokes equations with large initial data. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1421-1448. doi: 10.3934/cpaa.2020052

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]