
Previous Article
Asymptotic solutions of a nonlinear stochastic beam equation
 DCDSB Home
 This Issue

Next Article
Lyapunov exponents for stochastic differential equations with infinite memory and application to stochastic NavierStokes equations
Molecular motors, Brownian ratchets, and reflected diffusions
1.  Department of Statistics & Operations Research, University of North Carolina, Chapel Hill, NC 275993250, United States 
2.  Department of Mathematics, University of North Carolina, Chapel Hill, NC 27514, United States 
[1] 
Dmitry Vorotnikov. The flashing ratchet and unidirectional transport of matter. Discrete & Continuous Dynamical Systems  B, 2011, 16 (3) : 963971. doi: 10.3934/dcdsb.2011.16.963 
[2] 
David Heath, David Kinderlehrer, Michal Kowalczyk. Discrete and continuous ratchets: from coin toss to molecular motor. Discrete & Continuous Dynamical Systems  B, 2002, 2 (2) : 153167. doi: 10.3934/dcdsb.2002.2.153 
[3] 
Fabrice Baudoin, Camille Tardif. Hypocoercive estimates on foliations and velocity spherical Brownian motion. Kinetic & Related Models, 2018, 11 (1) : 123. doi: 10.3934/krm.2018001 
[4] 
Monia Karouf. Reflected solutions of backward doubly SDEs driven by Brownian motion and Poisson random measure. Discrete & Continuous Dynamical Systems  A, 2019, 39 (10) : 55715601. doi: 10.3934/dcds.2019245 
[5] 
TzongYow Lee. Asymptotic results for superBrownian motions and semilinear differential equations. Electronic Research Announcements, 1998, 4: 5662. 
[6] 
Jasmina Djordjević, Svetlana Janković. Reflected backward stochastic differential equations with perturbations. Discrete & Continuous Dynamical Systems  A, 2018, 38 (4) : 18331848. doi: 10.3934/dcds.2018075 
[7] 
Hongyong Zhao, Qianjin Zhang, Linhe Zhu. The spatial dynamics of a zebrafish model with crossdiffusions. Mathematical Biosciences & Engineering, 2017, 14 (4) : 10351054. doi: 10.3934/mbe.2017054 
[8] 
Yaozhong Hu, Yanghui Liu, David Nualart. Taylor schemes for rough differential equations and fractional diffusions. Discrete & Continuous Dynamical Systems  B, 2016, 21 (9) : 31153162. doi: 10.3934/dcdsb.2016090 
[9] 
Le Li, Lihong Huang, Jianhong Wu. Flocking and invariance of velocity angles. Mathematical Biosciences & Engineering, 2016, 13 (2) : 369380. doi: 10.3934/mbe.2015007 
[10] 
Han Wu, Changfan Zhang, Jing He, Kaihui Zhao. Distributed faulttolerant consensus tracking for networked nonidentical motors. Journal of Industrial & Management Optimization, 2017, 13 (2) : 917929. doi: 10.3934/jimo.2016053 
[11] 
Howard A. Levine, YeonJung Seo, Marit NilsenHamilton. A discrete dynamical system arising in molecular biology. Discrete & Continuous Dynamical Systems  B, 2012, 17 (6) : 20912151. doi: 10.3934/dcdsb.2012.17.2091 
[12] 
Irina Berezovik, Carlos GarcíaAzpeitia, Wieslaw Krawcewicz. Symmetries of nonlinear vibrations in tetrahedral molecular configurations. Discrete & Continuous Dynamical Systems  B, 2019, 24 (6) : 24732491. doi: 10.3934/dcdsb.2018261 
[13] 
Hirotada Honda. On a model of target detection in molecular communication networks. Networks & Heterogeneous Media, 2019, 14 (4) : 633657. doi: 10.3934/nhm.2019025 
[14] 
G. Wei, P. Clifford. Analysis and numerical approximation of a class of twoway diffusions. Communications on Pure & Applied Analysis, 2003, 2 (1) : 9199. doi: 10.3934/cpaa.2003.2.91 
[15] 
Atsushi Yagi. Exponential attractors for competing species model with crossdiffusions. Discrete & Continuous Dynamical Systems  A, 2008, 22 (4) : 10911120. doi: 10.3934/dcds.2008.22.1091 
[16] 
Patrick Guidotti. A family of nonlinear diffusions connecting PeronaMalik to standard diffusion. Discrete & Continuous Dynamical Systems  S, 2012, 5 (3) : 581590. doi: 10.3934/dcdss.2012.5.581 
[17] 
Kimun Ryu, Inkyung Ahn. On certain elliptic systems with nonlinear selfcross diffusions. Conference Publications, 2003, 2003 (Special) : 752759. doi: 10.3934/proc.2003.2003.752 
[18] 
Changbing Hu. Stability of undercompressive waves with second and fourth order diffusions. Discrete & Continuous Dynamical Systems  A, 2008, 22 (3) : 629662. doi: 10.3934/dcds.2008.22.629 
[19] 
Takashi Suzuki. Brownian point vortices and ddmodel. Discrete & Continuous Dynamical Systems  S, 2014, 7 (1) : 161176. doi: 10.3934/dcdss.2014.7.161 
[20] 
Elena Kosygina. Brownian flow on a finite interval with jump boundary conditions. Discrete & Continuous Dynamical Systems  B, 2006, 6 (4) : 867880. doi: 10.3934/dcdsb.2006.6.867 
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]