-
Previous Article
Modelling and long-time behaviour for phase transitions with entropy balance and thermal memory conductivity
- DCDS-B Home
- This Issue
-
Next Article
A posteriori error analysis for FEM of American options
Lagrangian averaging for the 1D compressible Euler equations
1. | Applied Physics and Applied Mathematics, Columbia University, New York NY 10027, United States |
2. | Department of Mathematics, Stanford University, Stanford CA 94305-2125, United States |
[1] |
Paolo Secchi. An alpha model for compressible fluids. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 351-359. doi: 10.3934/dcdss.2010.3.351 |
[2] |
Alberto Bressan. Impulsive control of Lagrangian systems and locomotion in fluids. Discrete and Continuous Dynamical Systems, 2008, 20 (1) : 1-35. doi: 10.3934/dcds.2008.20.1 |
[3] |
Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345 |
[4] |
Eugenio Aulisa, Lidia Bloshanskaya, Akif Ibragimov. Well productivity index for compressible fluids and gases. Evolution Equations and Control Theory, 2016, 5 (1) : 1-36. doi: 10.3934/eect.2016.5.1 |
[5] |
Eduard Feireisl, Antonín Novotný. Two phase flows of compressible viscous fluids. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022091 |
[6] |
Van-Sang Ngo, Stefano Scrobogna. Dispersive effects of weakly compressible and fast rotating inviscid fluids. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 749-789. doi: 10.3934/dcds.2018033 |
[7] |
Eduard Feireisl. On weak solutions to a diffuse interface model of a binary mixture of compressible fluids. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 173-183. doi: 10.3934/dcdss.2016.9.173 |
[8] |
Konstantina Trivisa. Global existence and asymptotic analysis of solutions to a model for the dynamic combustion of compressible fluids. Conference Publications, 2003, 2003 (Special) : 852-863. doi: 10.3934/proc.2003.2003.852 |
[9] |
Werner Bauer, François Gay-Balmaz. Towards a geometric variational discretization of compressible fluids: The rotating shallow water equations. Journal of Computational Dynamics, 2019, 6 (1) : 1-37. doi: 10.3934/jcd.2019001 |
[10] |
Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Phase transition and separation in compressible Cahn-Hilliard fluids. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 73-88. doi: 10.3934/dcdsb.2014.19.73 |
[11] |
Lvqiao liu, Lan Zhang. Optimal decay to the non-isentropic compressible micropolar fluids. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4575-4598. doi: 10.3934/cpaa.2020207 |
[12] |
Haigang Li, Jiguang Bao. Euler-Poisson equations related to general compressible rotating fluids. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1085-1096. doi: 10.3934/dcds.2011.29.1085 |
[13] |
Paola Goatin, Philippe G. LeFloch. $L^1$ continuous dependence for the Euler equations of compressible fluids dynamics. Communications on Pure and Applied Analysis, 2003, 2 (1) : 107-137. doi: 10.3934/cpaa.2003.2.107 |
[14] |
Bernard Ducomet, Eduard Feireisl, Hana Petzeltová, Ivan Straškraba. Global in time weak solutions for compressible barotropic self-gravitating fluids. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 113-130. doi: 10.3934/dcds.2004.11.113 |
[15] |
Colette Guillopé, Zaynab Salloum, Raafat Talhouk. Regular flows of weakly compressible viscoelastic fluids and the incompressible limit. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1001-1028. doi: 10.3934/dcdsb.2010.14.1001 |
[16] |
Hyeong-Ohk Bae, Young-Pil Choi, Seung-Yeal Ha, Moon-Jin Kang. Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4419-4458. doi: 10.3934/dcds.2014.34.4419 |
[17] |
Tomáš Roubíček. From quasi-incompressible to semi-compressible fluids. Discrete and Continuous Dynamical Systems - S, 2021, 14 (11) : 4069-4092. doi: 10.3934/dcdss.2020414 |
[18] |
T. Tachim Medjo. Averaging of a 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external forces. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1281-1305. doi: 10.3934/cpaa.2011.10.1281 |
[19] |
Matthias Hieber, Miho Murata. The $L^p$-approach to the fluid-rigid body interaction problem for compressible fluids. Evolution Equations and Control Theory, 2015, 4 (1) : 69-87. doi: 10.3934/eect.2015.4.69 |
[20] |
Ansgar Jüngel, Josipa-Pina Milišić. Full compressible Navier-Stokes equations for quantum fluids: Derivation and numerical solution. Kinetic and Related Models, 2011, 4 (3) : 785-807. doi: 10.3934/krm.2011.4.785 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]