
Previous Article
Galerkin method and approximate tracking in a nonminimum phase bilinear system
 DCDSB Home
 This Issue

Next Article
On Bloch waves for the Stokes equations
Wellposedness of the modified CrankNicholson difference schemes in Bochner spaces
1.  Department of Mathematics, Fatih University, 34500, Buyukcekmece, Istanbul, Turkey 
[1] 
Wei Yan, Yimin Zhang, Yongsheng Li, Jinqiao Duan. Sharp wellposedness of the Cauchy problem for the rotationmodified KadomtsevPetviashvili equation in anisotropic Sobolev spaces. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 58255849. doi: 10.3934/dcds.2021097 
[2] 
Tadahiro Oh, Yuzhao Wang. On global wellposedness of the modified KdV equation in modulation spaces. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 29712992. doi: 10.3934/dcds.2020393 
[3] 
Andreia Chapouto. A remark on the wellposedness of the modified KdV equation in the FourierLebesgue spaces. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 39153950. doi: 10.3934/dcds.2021022 
[4] 
Kai Yan, Zhaoyang Yin. Wellposedness for a modified twocomponent CamassaHolm system in critical spaces. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 16991712. doi: 10.3934/dcds.2013.33.1699 
[5] 
Junxiong Jia, Jigen Peng, Kexue Li. Wellposedness of abstract distributedorder fractional diffusion equations. Communications on Pure and Applied Analysis, 2014, 13 (2) : 605621. doi: 10.3934/cpaa.2014.13.605 
[6] 
Mircea Sofonea, Yibin Xiao. Tykhonov wellposedness of a viscoplastic contact problem^{†}. Evolution Equations and Control Theory, 2020, 9 (4) : 11671185. doi: 10.3934/eect.2020048 
[7] 
Aissa Guesmia, Nassereddine Tatar. Some wellposedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay. Communications on Pure and Applied Analysis, 2015, 14 (2) : 457491. doi: 10.3934/cpaa.2015.14.457 
[8] 
Qunyi Bie, Qiru Wang, ZhengAn Yao. On the wellposedness of the inviscid Boussinesq equations in the BesovMorrey spaces. Kinetic and Related Models, 2015, 8 (3) : 395411. doi: 10.3934/krm.2015.8.395 
[9] 
Gabriela Marinoschi. Well posedness of a timedifference scheme for a degenerate fast diffusion problem. Discrete and Continuous Dynamical Systems  B, 2010, 13 (2) : 435454. doi: 10.3934/dcdsb.2010.13.435 
[10] 
Giuseppe Floridia. Wellposedness for a class of nonlinear degenerate parabolic equations. Conference Publications, 2015, 2015 (special) : 455463. doi: 10.3934/proc.2015.0455 
[11] 
Zhaohui Huo, Boling Guo. The wellposedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 387402. doi: 10.3934/dcds.2005.12.387 
[12] 
Hongmei Cao, HaoGuang Li, ChaoJiang Xu, Jiang Xu. Wellposedness of Cauchy problem for Landau equation in critical Besov space. Kinetic and Related Models, 2019, 12 (4) : 829884. doi: 10.3934/krm.2019032 
[13] 
Changyan Li, Hui Li. Wellposedness of the twophase flow problem in incompressible MHD. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 56095632. doi: 10.3934/dcds.2021090 
[14] 
Luciano Abadías, Carlos Lizama, Pedro J. Miana, M. Pilar Velasco. On wellposedness of vectorvalued fractional differentialdifference equations. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 26792708. doi: 10.3934/dcds.2019112 
[15] 
Qihua Huang, Hao Wang. A toxinmediated sizestructured population model: Finite difference approximation and wellposedness. Mathematical Biosciences & Engineering, 2016, 13 (4) : 697722. doi: 10.3934/mbe.2016015 
[16] 
G. Fonseca, G. RodríguezBlanco, W. Sandoval. Wellposedness and illposedness results for the regularized BenjaminOno equation in weighted Sobolev spaces. Communications on Pure and Applied Analysis, 2015, 14 (4) : 13271341. doi: 10.3934/cpaa.2015.14.1327 
[17] 
Jiawei Chen, Zhongping Wan, Liuyang Yuan. Existence of solutions and $\alpha$wellposedness for a system of constrained setvalued variational inequalities. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 567581. doi: 10.3934/naco.2013.3.567 
[18] 
Rong Hu, YaPing Fang, NanJing Huang. LevitinPolyak wellposedness for variational inequalities and for optimization problems with variational inequality constraints. Journal of Industrial and Management Optimization, 2010, 6 (3) : 465481. doi: 10.3934/jimo.2010.6.465 
[19] 
Gianluca FrascaCaccia, Peter E. Hydon. Locally conservative finite difference schemes for the modified KdV equation. Journal of Computational Dynamics, 2019, 6 (2) : 307323. doi: 10.3934/jcd.2019015 
[20] 
Sergey Zelik, Jon Pennant. Global wellposedness in uniformly local spaces for the CahnHilliard equation in $\mathbb{R}^3$. Communications on Pure and Applied Analysis, 2013, 12 (1) : 461480. doi: 10.3934/cpaa.2013.12.461 
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]